Papers
arxiv:2203.12719

What to Hide from Your Students: Attention-Guided Masked Image Modeling

Published on Mar 23, 2022
Authors:
,
,
,
,
,

Abstract

Transformers and masked language modeling are quickly being adopted and explored in computer vision as vision transformers and masked image modeling (MIM). In this work, we argue that image token masking differs from token masking in text, due to the amount and correlation of tokens in an image. In particular, to generate a challenging pretext task for MIM, we advocate a shift from random masking to informed masking. We develop and exhibit this idea in the context of distillation-based MIM, where a teacher transformer encoder generates an attention map, which we use to guide masking for the student. We thus introduce a novel masking strategy, called attention-guided masking (AttMask), and we demonstrate its effectiveness over random masking for dense distillation-based MIM as well as plain distillation-based self-supervised learning on classification tokens. We confirm that AttMask accelerates the learning process and improves the performance on a variety of downstream tasks. We provide the implementation code at https://github.com/gkakogeorgiou/attmask.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2203.12719 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2203.12719 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2203.12719 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.