Update README.md
Browse files
README.md
CHANGED
|
@@ -6,17 +6,50 @@ tags:
|
|
| 6 |
- peft
|
| 7 |
library_name: transformers
|
| 8 |
widget:
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
license: other
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Model Trained Using AutoTrain
|
| 16 |
|
| 17 |
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
|
| 18 |
|
| 19 |
-
# Usage
|
| 20 |
|
| 21 |
```python
|
| 22 |
|
|
|
|
| 6 |
- peft
|
| 7 |
library_name: transformers
|
| 8 |
widget:
|
| 9 |
+
- messages:
|
| 10 |
+
- role: user
|
| 11 |
+
content: What is your favorite condiment?
|
| 12 |
license: other
|
| 13 |
+
datasets:
|
| 14 |
+
- timdettmers/openassistant-guanaco
|
| 15 |
+
language:
|
| 16 |
+
- en
|
| 17 |
---
|
| 18 |
+
# Model Details
|
| 19 |
+
|
| 20 |
+
This model is a finetuned Meta-Llama-3-8b-Instruct model on the openassistant dataset. It was finetuned using PEFT, a library for efficiently adapting pre-trained language models to various downstream applications without fine-tuning all the model’s parameters.
|
| 21 |
+
|
| 22 |
+
# Inference with PEFT Models:
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
|
| 26 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 27 |
+
from peft import PeftModel, PeftConfig
|
| 28 |
+
|
| 29 |
+
base_model = "meta-llama/Meta-Llama-3-8B"
|
| 30 |
+
adapter_model = "pantelnm/llama3-openassistant"
|
| 31 |
+
|
| 32 |
+
prompt = "Write your prompt here!"
|
| 33 |
+
|
| 34 |
+
model = AutoModelForCausalLM.from_pretrained(base_model)
|
| 35 |
+
model = PeftModel.from_pretrained(model, adapter_model)
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 37 |
+
|
| 38 |
+
model = model.to("cuda")
|
| 39 |
+
model.eval()
|
| 40 |
+
|
| 41 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 42 |
+
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=10)
|
| 45 |
+
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])
|
| 46 |
+
```
|
| 47 |
|
| 48 |
# Model Trained Using AutoTrain
|
| 49 |
|
| 50 |
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
|
| 51 |
|
| 52 |
+
# General Usage
|
| 53 |
|
| 54 |
```python
|
| 55 |
|