pankajmathur commited on
Commit
9b56981
·
verified ·
1 Parent(s): 6a1ce3d

Upload Orca_Mini_Chatbot_3B.ipynb

Browse files
Files changed (1) hide show
  1. Orca_Mini_Chatbot_3B.ipynb +467 -369
Orca_Mini_Chatbot_3B.ipynb CHANGED
@@ -16,7 +16,7 @@
16
  "accelerator": "GPU",
17
  "widgets": {
18
  "application/vnd.jupyter.widget-state+json": {
19
- "e9385ef87e2344e695c0c796b688c9d7": {
20
  "model_module": "@jupyter-widgets/controls",
21
  "model_name": "HBoxModel",
22
  "model_module_version": "1.5.0",
@@ -31,14 +31,14 @@
31
  "_view_name": "HBoxView",
32
  "box_style": "",
33
  "children": [
34
- "IPY_MODEL_7c09c69438c34f348824018d398763ee",
35
- "IPY_MODEL_0161ce085acf480c8c3f543038f8e7a0",
36
- "IPY_MODEL_9f3245f1ed614cc098ae3b699ffb2775"
37
  ],
38
- "layout": "IPY_MODEL_47183797a4f94f81814d3437d452a66d"
39
  }
40
  },
41
- "7c09c69438c34f348824018d398763ee": {
42
  "model_module": "@jupyter-widgets/controls",
43
  "model_name": "HTMLModel",
44
  "model_module_version": "1.5.0",
@@ -53,13 +53,13 @@
53
  "_view_name": "HTMLView",
54
  "description": "",
55
  "description_tooltip": null,
56
- "layout": "IPY_MODEL_3015fc9e94364db6b97c61801fc2ac65",
57
  "placeholder": "​",
58
- "style": "IPY_MODEL_9811b8e61d684726a45db85a2c47c02c",
59
  "value": "config.json: 100%"
60
  }
61
  },
62
- "0161ce085acf480c8c3f543038f8e7a0": {
63
  "model_module": "@jupyter-widgets/controls",
64
  "model_name": "FloatProgressModel",
65
  "model_module_version": "1.5.0",
@@ -75,15 +75,15 @@
75
  "bar_style": "success",
76
  "description": "",
77
  "description_tooltip": null,
78
- "layout": "IPY_MODEL_ac74cde7b3ff45558d5f7301e2d48e5c",
79
  "max": 895,
80
  "min": 0,
81
  "orientation": "horizontal",
82
- "style": "IPY_MODEL_a64363a41bbb4fa3a6a75c67fbead9a3",
83
  "value": 895
84
  }
85
  },
86
- "9f3245f1ed614cc098ae3b699ffb2775": {
87
  "model_module": "@jupyter-widgets/controls",
88
  "model_name": "HTMLModel",
89
  "model_module_version": "1.5.0",
@@ -98,13 +98,13 @@
98
  "_view_name": "HTMLView",
99
  "description": "",
100
  "description_tooltip": null,
101
- "layout": "IPY_MODEL_e5e618fbe3164aa5ab8afcb9e01b86e1",
102
  "placeholder": "​",
103
- "style": "IPY_MODEL_88b5dee8edf8477cbd5ffb19f0d2ffc9",
104
- "value": " 895/895 [00:00<00:00, 24.4kB/s]"
105
  }
106
  },
107
- "47183797a4f94f81814d3437d452a66d": {
108
  "model_module": "@jupyter-widgets/base",
109
  "model_name": "LayoutModel",
110
  "model_module_version": "1.2.0",
@@ -156,7 +156,7 @@
156
  "width": null
157
  }
158
  },
159
- "3015fc9e94364db6b97c61801fc2ac65": {
160
  "model_module": "@jupyter-widgets/base",
161
  "model_name": "LayoutModel",
162
  "model_module_version": "1.2.0",
@@ -208,7 +208,7 @@
208
  "width": null
209
  }
210
  },
211
- "9811b8e61d684726a45db85a2c47c02c": {
212
  "model_module": "@jupyter-widgets/controls",
213
  "model_name": "DescriptionStyleModel",
214
  "model_module_version": "1.5.0",
@@ -223,7 +223,7 @@
223
  "description_width": ""
224
  }
225
  },
226
- "ac74cde7b3ff45558d5f7301e2d48e5c": {
227
  "model_module": "@jupyter-widgets/base",
228
  "model_name": "LayoutModel",
229
  "model_module_version": "1.2.0",
@@ -275,7 +275,7 @@
275
  "width": null
276
  }
277
  },
278
- "a64363a41bbb4fa3a6a75c67fbead9a3": {
279
  "model_module": "@jupyter-widgets/controls",
280
  "model_name": "ProgressStyleModel",
281
  "model_module_version": "1.5.0",
@@ -291,7 +291,7 @@
291
  "description_width": ""
292
  }
293
  },
294
- "e5e618fbe3164aa5ab8afcb9e01b86e1": {
295
  "model_module": "@jupyter-widgets/base",
296
  "model_name": "LayoutModel",
297
  "model_module_version": "1.2.0",
@@ -343,7 +343,7 @@
343
  "width": null
344
  }
345
  },
346
- "88b5dee8edf8477cbd5ffb19f0d2ffc9": {
347
  "model_module": "@jupyter-widgets/controls",
348
  "model_name": "DescriptionStyleModel",
349
  "model_module_version": "1.5.0",
@@ -358,7 +358,7 @@
358
  "description_width": ""
359
  }
360
  },
361
- "055a2876ed374bbb95eec05fc6d6995e": {
362
  "model_module": "@jupyter-widgets/controls",
363
  "model_name": "HBoxModel",
364
  "model_module_version": "1.5.0",
@@ -373,14 +373,14 @@
373
  "_view_name": "HBoxView",
374
  "box_style": "",
375
  "children": [
376
- "IPY_MODEL_d3dc3be579c74716ad5901f57d683609",
377
- "IPY_MODEL_9ffd55366beb463a964abb9298393761",
378
- "IPY_MODEL_7b626153ae1144dfb227e3d0cfc2a994"
379
  ],
380
- "layout": "IPY_MODEL_e05eb84b1fef4d639228eca7f6eb645e"
381
  }
382
  },
383
- "d3dc3be579c74716ad5901f57d683609": {
384
  "model_module": "@jupyter-widgets/controls",
385
  "model_name": "HTMLModel",
386
  "model_module_version": "1.5.0",
@@ -395,13 +395,13 @@
395
  "_view_name": "HTMLView",
396
  "description": "",
397
  "description_tooltip": null,
398
- "layout": "IPY_MODEL_91face3b5b2c4f908ff635866ec4a5a3",
399
  "placeholder": "​",
400
- "style": "IPY_MODEL_6a0c9cde0397400493320415ad09d5dc",
401
  "value": "model.safetensors.index.json: 100%"
402
  }
403
  },
404
- "9ffd55366beb463a964abb9298393761": {
405
  "model_module": "@jupyter-widgets/controls",
406
  "model_name": "FloatProgressModel",
407
  "model_module_version": "1.5.0",
@@ -417,15 +417,15 @@
417
  "bar_style": "success",
418
  "description": "",
419
  "description_tooltip": null,
420
- "layout": "IPY_MODEL_f5494578f0d443918be7340d8b715fa1",
421
  "max": 22008,
422
  "min": 0,
423
  "orientation": "horizontal",
424
- "style": "IPY_MODEL_121d66518e8046b780cd82c3bc38f9ac",
425
  "value": 22008
426
  }
427
  },
428
- "7b626153ae1144dfb227e3d0cfc2a994": {
429
  "model_module": "@jupyter-widgets/controls",
430
  "model_name": "HTMLModel",
431
  "model_module_version": "1.5.0",
@@ -440,13 +440,13 @@
440
  "_view_name": "HTMLView",
441
  "description": "",
442
  "description_tooltip": null,
443
- "layout": "IPY_MODEL_1380bfe1aba54f17b9e23d5bede70216",
444
  "placeholder": "​",
445
- "style": "IPY_MODEL_f2f570c85b8540d281cff7d8a46015e0",
446
- "value": " 22.0k/22.0k [00:00<00:00, 324kB/s]"
447
  }
448
  },
449
- "e05eb84b1fef4d639228eca7f6eb645e": {
450
  "model_module": "@jupyter-widgets/base",
451
  "model_name": "LayoutModel",
452
  "model_module_version": "1.2.0",
@@ -498,7 +498,7 @@
498
  "width": null
499
  }
500
  },
501
- "91face3b5b2c4f908ff635866ec4a5a3": {
502
  "model_module": "@jupyter-widgets/base",
503
  "model_name": "LayoutModel",
504
  "model_module_version": "1.2.0",
@@ -550,7 +550,7 @@
550
  "width": null
551
  }
552
  },
553
- "6a0c9cde0397400493320415ad09d5dc": {
554
  "model_module": "@jupyter-widgets/controls",
555
  "model_name": "DescriptionStyleModel",
556
  "model_module_version": "1.5.0",
@@ -565,7 +565,7 @@
565
  "description_width": ""
566
  }
567
  },
568
- "f5494578f0d443918be7340d8b715fa1": {
569
  "model_module": "@jupyter-widgets/base",
570
  "model_name": "LayoutModel",
571
  "model_module_version": "1.2.0",
@@ -617,7 +617,7 @@
617
  "width": null
618
  }
619
  },
620
- "121d66518e8046b780cd82c3bc38f9ac": {
621
  "model_module": "@jupyter-widgets/controls",
622
  "model_name": "ProgressStyleModel",
623
  "model_module_version": "1.5.0",
@@ -633,7 +633,7 @@
633
  "description_width": ""
634
  }
635
  },
636
- "1380bfe1aba54f17b9e23d5bede70216": {
637
  "model_module": "@jupyter-widgets/base",
638
  "model_name": "LayoutModel",
639
  "model_module_version": "1.2.0",
@@ -685,7 +685,7 @@
685
  "width": null
686
  }
687
  },
688
- "f2f570c85b8540d281cff7d8a46015e0": {
689
  "model_module": "@jupyter-widgets/controls",
690
  "model_name": "DescriptionStyleModel",
691
  "model_module_version": "1.5.0",
@@ -700,7 +700,7 @@
700
  "description_width": ""
701
  }
702
  },
703
- "fd1fb017d77b4fc8b441a20ba879fd55": {
704
  "model_module": "@jupyter-widgets/controls",
705
  "model_name": "HBoxModel",
706
  "model_module_version": "1.5.0",
@@ -715,14 +715,14 @@
715
  "_view_name": "HBoxView",
716
  "box_style": "",
717
  "children": [
718
- "IPY_MODEL_d125b3abe5654324bac391440fce5d99",
719
- "IPY_MODEL_be88ed9383274a4e8110e48686acbcd9",
720
- "IPY_MODEL_f30782567b0143ae872aaf64b2fa6c97"
721
  ],
722
- "layout": "IPY_MODEL_5837a5a5d9a940abac33214b6790cfdf"
723
  }
724
  },
725
- "d125b3abe5654324bac391440fce5d99": {
726
  "model_module": "@jupyter-widgets/controls",
727
  "model_name": "HTMLModel",
728
  "model_module_version": "1.5.0",
@@ -737,13 +737,13 @@
737
  "_view_name": "HTMLView",
738
  "description": "",
739
  "description_tooltip": null,
740
- "layout": "IPY_MODEL_db348d98b30240e7a8aaa81f6694baf0",
741
  "placeholder": "​",
742
- "style": "IPY_MODEL_54bdc4db6565499bb4e6e49177724e5c",
743
  "value": "Downloading shards: 100%"
744
  }
745
  },
746
- "be88ed9383274a4e8110e48686acbcd9": {
747
  "model_module": "@jupyter-widgets/controls",
748
  "model_name": "FloatProgressModel",
749
  "model_module_version": "1.5.0",
@@ -759,15 +759,15 @@
759
  "bar_style": "success",
760
  "description": "",
761
  "description_tooltip": null,
762
- "layout": "IPY_MODEL_30315982072d46db87cfdc180a27b592",
763
  "max": 2,
764
  "min": 0,
765
  "orientation": "horizontal",
766
- "style": "IPY_MODEL_c1aa671e8cfd4c56925c1465b8a80575",
767
  "value": 2
768
  }
769
  },
770
- "f30782567b0143ae872aaf64b2fa6c97": {
771
  "model_module": "@jupyter-widgets/controls",
772
  "model_name": "HTMLModel",
773
  "model_module_version": "1.5.0",
@@ -782,13 +782,13 @@
782
  "_view_name": "HTMLView",
783
  "description": "",
784
  "description_tooltip": null,
785
- "layout": "IPY_MODEL_dcc618142d6d41ceafab50eff14e9538",
786
  "placeholder": "​",
787
- "style": "IPY_MODEL_e613282e576d4e63bdd7f6fd8cad8f9e",
788
- "value": " 2/2 [02:32<00:00, 68.95s/it]"
789
  }
790
  },
791
- "5837a5a5d9a940abac33214b6790cfdf": {
792
  "model_module": "@jupyter-widgets/base",
793
  "model_name": "LayoutModel",
794
  "model_module_version": "1.2.0",
@@ -840,7 +840,7 @@
840
  "width": null
841
  }
842
  },
843
- "db348d98b30240e7a8aaa81f6694baf0": {
844
  "model_module": "@jupyter-widgets/base",
845
  "model_name": "LayoutModel",
846
  "model_module_version": "1.2.0",
@@ -892,7 +892,7 @@
892
  "width": null
893
  }
894
  },
895
- "54bdc4db6565499bb4e6e49177724e5c": {
896
  "model_module": "@jupyter-widgets/controls",
897
  "model_name": "DescriptionStyleModel",
898
  "model_module_version": "1.5.0",
@@ -907,7 +907,7 @@
907
  "description_width": ""
908
  }
909
  },
910
- "30315982072d46db87cfdc180a27b592": {
911
  "model_module": "@jupyter-widgets/base",
912
  "model_name": "LayoutModel",
913
  "model_module_version": "1.2.0",
@@ -959,7 +959,7 @@
959
  "width": null
960
  }
961
  },
962
- "c1aa671e8cfd4c56925c1465b8a80575": {
963
  "model_module": "@jupyter-widgets/controls",
964
  "model_name": "ProgressStyleModel",
965
  "model_module_version": "1.5.0",
@@ -975,7 +975,7 @@
975
  "description_width": ""
976
  }
977
  },
978
- "dcc618142d6d41ceafab50eff14e9538": {
979
  "model_module": "@jupyter-widgets/base",
980
  "model_name": "LayoutModel",
981
  "model_module_version": "1.2.0",
@@ -1027,7 +1027,7 @@
1027
  "width": null
1028
  }
1029
  },
1030
- "e613282e576d4e63bdd7f6fd8cad8f9e": {
1031
  "model_module": "@jupyter-widgets/controls",
1032
  "model_name": "DescriptionStyleModel",
1033
  "model_module_version": "1.5.0",
@@ -1042,7 +1042,7 @@
1042
  "description_width": ""
1043
  }
1044
  },
1045
- "d3866446d9ca475296f8abed6433d57b": {
1046
  "model_module": "@jupyter-widgets/controls",
1047
  "model_name": "HBoxModel",
1048
  "model_module_version": "1.5.0",
@@ -1057,14 +1057,14 @@
1057
  "_view_name": "HBoxView",
1058
  "box_style": "",
1059
  "children": [
1060
- "IPY_MODEL_8ce19b289c994fbd85872ce3b549a3bd",
1061
- "IPY_MODEL_61a921fafea6412285bf3d773bb35d38",
1062
- "IPY_MODEL_b74b7548badc4b06996eed42ef5aac23"
1063
  ],
1064
- "layout": "IPY_MODEL_ab44258e51894fd5bafe16c3360d13d1"
1065
  }
1066
  },
1067
- "8ce19b289c994fbd85872ce3b549a3bd": {
1068
  "model_module": "@jupyter-widgets/controls",
1069
  "model_name": "HTMLModel",
1070
  "model_module_version": "1.5.0",
@@ -1079,13 +1079,13 @@
1079
  "_view_name": "HTMLView",
1080
  "description": "",
1081
  "description_tooltip": null,
1082
- "layout": "IPY_MODEL_dd11c8d47c594a529e8be13d724b1418",
1083
  "placeholder": "​",
1084
- "style": "IPY_MODEL_a4e8936c5d084e5db41a0b1e5d36dcf5",
1085
  "value": "model-00001-of-00002.safetensors: 100%"
1086
  }
1087
  },
1088
- "61a921fafea6412285bf3d773bb35d38": {
1089
  "model_module": "@jupyter-widgets/controls",
1090
  "model_name": "FloatProgressModel",
1091
  "model_module_version": "1.5.0",
@@ -1101,15 +1101,15 @@
1101
  "bar_style": "success",
1102
  "description": "",
1103
  "description_tooltip": null,
1104
- "layout": "IPY_MODEL_7c878a8e653548bb988bc6cf7a560172",
1105
  "max": 4965799144,
1106
  "min": 0,
1107
  "orientation": "horizontal",
1108
- "style": "IPY_MODEL_5c17e2956ca04940845bb623c453a5d6",
1109
  "value": 4965799144
1110
  }
1111
  },
1112
- "b74b7548badc4b06996eed42ef5aac23": {
1113
  "model_module": "@jupyter-widgets/controls",
1114
  "model_name": "HTMLModel",
1115
  "model_module_version": "1.5.0",
@@ -1124,13 +1124,13 @@
1124
  "_view_name": "HTMLView",
1125
  "description": "",
1126
  "description_tooltip": null,
1127
- "layout": "IPY_MODEL_c5a28ec8b9364afead0427882457b408",
1128
  "placeholder": "​",
1129
- "style": "IPY_MODEL_38ec15ed776c4c4dad55acdb897171c3",
1130
- "value": " 4.97G/4.97G [01:57<00:00, 42.6MB/s]"
1131
  }
1132
  },
1133
- "ab44258e51894fd5bafe16c3360d13d1": {
1134
  "model_module": "@jupyter-widgets/base",
1135
  "model_name": "LayoutModel",
1136
  "model_module_version": "1.2.0",
@@ -1182,7 +1182,7 @@
1182
  "width": null
1183
  }
1184
  },
1185
- "dd11c8d47c594a529e8be13d724b1418": {
1186
  "model_module": "@jupyter-widgets/base",
1187
  "model_name": "LayoutModel",
1188
  "model_module_version": "1.2.0",
@@ -1234,7 +1234,7 @@
1234
  "width": null
1235
  }
1236
  },
1237
- "a4e8936c5d084e5db41a0b1e5d36dcf5": {
1238
  "model_module": "@jupyter-widgets/controls",
1239
  "model_name": "DescriptionStyleModel",
1240
  "model_module_version": "1.5.0",
@@ -1249,7 +1249,7 @@
1249
  "description_width": ""
1250
  }
1251
  },
1252
- "7c878a8e653548bb988bc6cf7a560172": {
1253
  "model_module": "@jupyter-widgets/base",
1254
  "model_name": "LayoutModel",
1255
  "model_module_version": "1.2.0",
@@ -1301,7 +1301,7 @@
1301
  "width": null
1302
  }
1303
  },
1304
- "5c17e2956ca04940845bb623c453a5d6": {
1305
  "model_module": "@jupyter-widgets/controls",
1306
  "model_name": "ProgressStyleModel",
1307
  "model_module_version": "1.5.0",
@@ -1317,7 +1317,7 @@
1317
  "description_width": ""
1318
  }
1319
  },
1320
- "c5a28ec8b9364afead0427882457b408": {
1321
  "model_module": "@jupyter-widgets/base",
1322
  "model_name": "LayoutModel",
1323
  "model_module_version": "1.2.0",
@@ -1369,7 +1369,7 @@
1369
  "width": null
1370
  }
1371
  },
1372
- "38ec15ed776c4c4dad55acdb897171c3": {
1373
  "model_module": "@jupyter-widgets/controls",
1374
  "model_name": "DescriptionStyleModel",
1375
  "model_module_version": "1.5.0",
@@ -1384,7 +1384,7 @@
1384
  "description_width": ""
1385
  }
1386
  },
1387
- "6045c69a660b441b9466082caaa93753": {
1388
  "model_module": "@jupyter-widgets/controls",
1389
  "model_name": "HBoxModel",
1390
  "model_module_version": "1.5.0",
@@ -1399,14 +1399,14 @@
1399
  "_view_name": "HBoxView",
1400
  "box_style": "",
1401
  "children": [
1402
- "IPY_MODEL_12ad12e582f14082a4747f11df6801a0",
1403
- "IPY_MODEL_59091c96637c46029a7c22d2e911b23b",
1404
- "IPY_MODEL_627e7d6f2a474c18af69a49d0e3c1fb9"
1405
  ],
1406
- "layout": "IPY_MODEL_b76d647c92b8453585111fa03e93a5db"
1407
  }
1408
  },
1409
- "12ad12e582f14082a4747f11df6801a0": {
1410
  "model_module": "@jupyter-widgets/controls",
1411
  "model_name": "HTMLModel",
1412
  "model_module_version": "1.5.0",
@@ -1421,13 +1421,13 @@
1421
  "_view_name": "HTMLView",
1422
  "description": "",
1423
  "description_tooltip": null,
1424
- "layout": "IPY_MODEL_2e30d5e081a34947a3d47cd4f233ee36",
1425
  "placeholder": "​",
1426
- "style": "IPY_MODEL_7b90ce7832f64fdf9e2ef7ed505cf168",
1427
  "value": "model-00002-of-00002.safetensors: 100%"
1428
  }
1429
  },
1430
- "59091c96637c46029a7c22d2e911b23b": {
1431
  "model_module": "@jupyter-widgets/controls",
1432
  "model_name": "FloatProgressModel",
1433
  "model_module_version": "1.5.0",
@@ -1443,15 +1443,15 @@
1443
  "bar_style": "success",
1444
  "description": "",
1445
  "description_tooltip": null,
1446
- "layout": "IPY_MODEL_8780e2ef94dd4884a79d4537ce602a9a",
1447
  "max": 1459729952,
1448
  "min": 0,
1449
  "orientation": "horizontal",
1450
- "style": "IPY_MODEL_20903107a3ca449da9126d3097cb52a0",
1451
  "value": 1459729952
1452
  }
1453
  },
1454
- "627e7d6f2a474c18af69a49d0e3c1fb9": {
1455
  "model_module": "@jupyter-widgets/controls",
1456
  "model_name": "HTMLModel",
1457
  "model_module_version": "1.5.0",
@@ -1466,13 +1466,13 @@
1466
  "_view_name": "HTMLView",
1467
  "description": "",
1468
  "description_tooltip": null,
1469
- "layout": "IPY_MODEL_5a9bb8b3141e42f0a2262a6dc9618b91",
1470
  "placeholder": "​",
1471
- "style": "IPY_MODEL_56460eb57c694c358f2cc69f3ddcff21",
1472
- "value": " 1.46G/1.46G [00:34<00:00, 42.5MB/s]"
1473
  }
1474
  },
1475
- "b76d647c92b8453585111fa03e93a5db": {
1476
  "model_module": "@jupyter-widgets/base",
1477
  "model_name": "LayoutModel",
1478
  "model_module_version": "1.2.0",
@@ -1524,7 +1524,7 @@
1524
  "width": null
1525
  }
1526
  },
1527
- "2e30d5e081a34947a3d47cd4f233ee36": {
1528
  "model_module": "@jupyter-widgets/base",
1529
  "model_name": "LayoutModel",
1530
  "model_module_version": "1.2.0",
@@ -1576,7 +1576,7 @@
1576
  "width": null
1577
  }
1578
  },
1579
- "7b90ce7832f64fdf9e2ef7ed505cf168": {
1580
  "model_module": "@jupyter-widgets/controls",
1581
  "model_name": "DescriptionStyleModel",
1582
  "model_module_version": "1.5.0",
@@ -1591,7 +1591,7 @@
1591
  "description_width": ""
1592
  }
1593
  },
1594
- "8780e2ef94dd4884a79d4537ce602a9a": {
1595
  "model_module": "@jupyter-widgets/base",
1596
  "model_name": "LayoutModel",
1597
  "model_module_version": "1.2.0",
@@ -1643,7 +1643,7 @@
1643
  "width": null
1644
  }
1645
  },
1646
- "20903107a3ca449da9126d3097cb52a0": {
1647
  "model_module": "@jupyter-widgets/controls",
1648
  "model_name": "ProgressStyleModel",
1649
  "model_module_version": "1.5.0",
@@ -1659,7 +1659,7 @@
1659
  "description_width": ""
1660
  }
1661
  },
1662
- "5a9bb8b3141e42f0a2262a6dc9618b91": {
1663
  "model_module": "@jupyter-widgets/base",
1664
  "model_name": "LayoutModel",
1665
  "model_module_version": "1.2.0",
@@ -1711,7 +1711,7 @@
1711
  "width": null
1712
  }
1713
  },
1714
- "56460eb57c694c358f2cc69f3ddcff21": {
1715
  "model_module": "@jupyter-widgets/controls",
1716
  "model_name": "DescriptionStyleModel",
1717
  "model_module_version": "1.5.0",
@@ -1726,7 +1726,7 @@
1726
  "description_width": ""
1727
  }
1728
  },
1729
- "c99c59ac7b5e4e99b8074b00b2ee8429": {
1730
  "model_module": "@jupyter-widgets/controls",
1731
  "model_name": "HBoxModel",
1732
  "model_module_version": "1.5.0",
@@ -1741,14 +1741,14 @@
1741
  "_view_name": "HBoxView",
1742
  "box_style": "",
1743
  "children": [
1744
- "IPY_MODEL_cdb0e079d46c4198a79fd13f9502eb97",
1745
- "IPY_MODEL_a408957f3d8e49db8231513cbd9648fc",
1746
- "IPY_MODEL_e1ccf915d9344b019bb58d4cb6eed648"
1747
  ],
1748
- "layout": "IPY_MODEL_ad8b090a922b4ff4af120a8bc9927df8"
1749
  }
1750
  },
1751
- "cdb0e079d46c4198a79fd13f9502eb97": {
1752
  "model_module": "@jupyter-widgets/controls",
1753
  "model_name": "HTMLModel",
1754
  "model_module_version": "1.5.0",
@@ -1763,13 +1763,13 @@
1763
  "_view_name": "HTMLView",
1764
  "description": "",
1765
  "description_tooltip": null,
1766
- "layout": "IPY_MODEL_c8e6a1bbdc2642c3ab1be678bdc43720",
1767
  "placeholder": "​",
1768
- "style": "IPY_MODEL_ccdce67075aa4496b16d0897ef58ef5c",
1769
  "value": "Loading checkpoint shards: 100%"
1770
  }
1771
  },
1772
- "a408957f3d8e49db8231513cbd9648fc": {
1773
  "model_module": "@jupyter-widgets/controls",
1774
  "model_name": "FloatProgressModel",
1775
  "model_module_version": "1.5.0",
@@ -1785,15 +1785,15 @@
1785
  "bar_style": "success",
1786
  "description": "",
1787
  "description_tooltip": null,
1788
- "layout": "IPY_MODEL_43530e8b5d18483e81074dec4dbac234",
1789
  "max": 2,
1790
  "min": 0,
1791
  "orientation": "horizontal",
1792
- "style": "IPY_MODEL_2ef7d26371414fe1adefc3ea2a4cacd0",
1793
  "value": 2
1794
  }
1795
  },
1796
- "e1ccf915d9344b019bb58d4cb6eed648": {
1797
  "model_module": "@jupyter-widgets/controls",
1798
  "model_name": "HTMLModel",
1799
  "model_module_version": "1.5.0",
@@ -1808,13 +1808,13 @@
1808
  "_view_name": "HTMLView",
1809
  "description": "",
1810
  "description_tooltip": null,
1811
- "layout": "IPY_MODEL_3b8b7592616d4a068a0da9d49b32a5a2",
1812
  "placeholder": "​",
1813
- "style": "IPY_MODEL_6f2b9a3456dc468a941ead8c33752d3c",
1814
- "value": " 2/2 [00:33<00:00, 15.20s/it]"
1815
  }
1816
  },
1817
- "ad8b090a922b4ff4af120a8bc9927df8": {
1818
  "model_module": "@jupyter-widgets/base",
1819
  "model_name": "LayoutModel",
1820
  "model_module_version": "1.2.0",
@@ -1866,7 +1866,7 @@
1866
  "width": null
1867
  }
1868
  },
1869
- "c8e6a1bbdc2642c3ab1be678bdc43720": {
1870
  "model_module": "@jupyter-widgets/base",
1871
  "model_name": "LayoutModel",
1872
  "model_module_version": "1.2.0",
@@ -1918,7 +1918,7 @@
1918
  "width": null
1919
  }
1920
  },
1921
- "ccdce67075aa4496b16d0897ef58ef5c": {
1922
  "model_module": "@jupyter-widgets/controls",
1923
  "model_name": "DescriptionStyleModel",
1924
  "model_module_version": "1.5.0",
@@ -1933,7 +1933,7 @@
1933
  "description_width": ""
1934
  }
1935
  },
1936
- "43530e8b5d18483e81074dec4dbac234": {
1937
  "model_module": "@jupyter-widgets/base",
1938
  "model_name": "LayoutModel",
1939
  "model_module_version": "1.2.0",
@@ -1985,7 +1985,7 @@
1985
  "width": null
1986
  }
1987
  },
1988
- "2ef7d26371414fe1adefc3ea2a4cacd0": {
1989
  "model_module": "@jupyter-widgets/controls",
1990
  "model_name": "ProgressStyleModel",
1991
  "model_module_version": "1.5.0",
@@ -2001,7 +2001,7 @@
2001
  "description_width": ""
2002
  }
2003
  },
2004
- "3b8b7592616d4a068a0da9d49b32a5a2": {
2005
  "model_module": "@jupyter-widgets/base",
2006
  "model_name": "LayoutModel",
2007
  "model_module_version": "1.2.0",
@@ -2053,7 +2053,7 @@
2053
  "width": null
2054
  }
2055
  },
2056
- "6f2b9a3456dc468a941ead8c33752d3c": {
2057
  "model_module": "@jupyter-widgets/controls",
2058
  "model_name": "DescriptionStyleModel",
2059
  "model_module_version": "1.5.0",
@@ -2068,7 +2068,7 @@
2068
  "description_width": ""
2069
  }
2070
  },
2071
- "df820f68237d4abdabf22ae882cdff49": {
2072
  "model_module": "@jupyter-widgets/controls",
2073
  "model_name": "HBoxModel",
2074
  "model_module_version": "1.5.0",
@@ -2083,14 +2083,14 @@
2083
  "_view_name": "HBoxView",
2084
  "box_style": "",
2085
  "children": [
2086
- "IPY_MODEL_3e00e9c282ca4d9ab88aa03240617a39",
2087
- "IPY_MODEL_de860be1db594e5c951d081536d78647",
2088
- "IPY_MODEL_b7b91104e6a74424bb465bb36e66bf83"
2089
  ],
2090
- "layout": "IPY_MODEL_8111b2c14a68442e94554fd839b2d6b1"
2091
  }
2092
  },
2093
- "3e00e9c282ca4d9ab88aa03240617a39": {
2094
  "model_module": "@jupyter-widgets/controls",
2095
  "model_name": "HTMLModel",
2096
  "model_module_version": "1.5.0",
@@ -2105,13 +2105,13 @@
2105
  "_view_name": "HTMLView",
2106
  "description": "",
2107
  "description_tooltip": null,
2108
- "layout": "IPY_MODEL_288a4f0fb77341f398335f4cca2878ff",
2109
  "placeholder": "​",
2110
- "style": "IPY_MODEL_f5853b816fe3452f90c44451d5080b4b",
2111
  "value": "generation_config.json: 100%"
2112
  }
2113
  },
2114
- "de860be1db594e5c951d081536d78647": {
2115
  "model_module": "@jupyter-widgets/controls",
2116
  "model_name": "FloatProgressModel",
2117
  "model_module_version": "1.5.0",
@@ -2127,15 +2127,15 @@
2127
  "bar_style": "success",
2128
  "description": "",
2129
  "description_tooltip": null,
2130
- "layout": "IPY_MODEL_1e5761d5549d4ab580cbe329ce55de2a",
2131
  "max": 184,
2132
  "min": 0,
2133
  "orientation": "horizontal",
2134
- "style": "IPY_MODEL_55c169fabf7b4e1090465a77e4c824fc",
2135
  "value": 184
2136
  }
2137
  },
2138
- "b7b91104e6a74424bb465bb36e66bf83": {
2139
  "model_module": "@jupyter-widgets/controls",
2140
  "model_name": "HTMLModel",
2141
  "model_module_version": "1.5.0",
@@ -2150,13 +2150,13 @@
2150
  "_view_name": "HTMLView",
2151
  "description": "",
2152
  "description_tooltip": null,
2153
- "layout": "IPY_MODEL_4d630bd1921e42199672d35bccbdd1a4",
2154
  "placeholder": "​",
2155
- "style": "IPY_MODEL_e925a447b0ba4b96816adf960eecd36b",
2156
- "value": " 184/184 [00:00<00:00, 11.6kB/s]"
2157
  }
2158
  },
2159
- "8111b2c14a68442e94554fd839b2d6b1": {
2160
  "model_module": "@jupyter-widgets/base",
2161
  "model_name": "LayoutModel",
2162
  "model_module_version": "1.2.0",
@@ -2208,7 +2208,7 @@
2208
  "width": null
2209
  }
2210
  },
2211
- "288a4f0fb77341f398335f4cca2878ff": {
2212
  "model_module": "@jupyter-widgets/base",
2213
  "model_name": "LayoutModel",
2214
  "model_module_version": "1.2.0",
@@ -2260,7 +2260,7 @@
2260
  "width": null
2261
  }
2262
  },
2263
- "f5853b816fe3452f90c44451d5080b4b": {
2264
  "model_module": "@jupyter-widgets/controls",
2265
  "model_name": "DescriptionStyleModel",
2266
  "model_module_version": "1.5.0",
@@ -2275,7 +2275,7 @@
2275
  "description_width": ""
2276
  }
2277
  },
2278
- "1e5761d5549d4ab580cbe329ce55de2a": {
2279
  "model_module": "@jupyter-widgets/base",
2280
  "model_name": "LayoutModel",
2281
  "model_module_version": "1.2.0",
@@ -2327,7 +2327,7 @@
2327
  "width": null
2328
  }
2329
  },
2330
- "55c169fabf7b4e1090465a77e4c824fc": {
2331
  "model_module": "@jupyter-widgets/controls",
2332
  "model_name": "ProgressStyleModel",
2333
  "model_module_version": "1.5.0",
@@ -2343,7 +2343,7 @@
2343
  "description_width": ""
2344
  }
2345
  },
2346
- "4d630bd1921e42199672d35bccbdd1a4": {
2347
  "model_module": "@jupyter-widgets/base",
2348
  "model_name": "LayoutModel",
2349
  "model_module_version": "1.2.0",
@@ -2395,7 +2395,7 @@
2395
  "width": null
2396
  }
2397
  },
2398
- "e925a447b0ba4b96816adf960eecd36b": {
2399
  "model_module": "@jupyter-widgets/controls",
2400
  "model_name": "DescriptionStyleModel",
2401
  "model_module_version": "1.5.0",
@@ -2410,7 +2410,7 @@
2410
  "description_width": ""
2411
  }
2412
  },
2413
- "bb82142059604f709f287cd3e0b4de08": {
2414
  "model_module": "@jupyter-widgets/controls",
2415
  "model_name": "HBoxModel",
2416
  "model_module_version": "1.5.0",
@@ -2425,14 +2425,14 @@
2425
  "_view_name": "HBoxView",
2426
  "box_style": "",
2427
  "children": [
2428
- "IPY_MODEL_968a7e57b00841f98e610bc70aa88441",
2429
- "IPY_MODEL_aded581d87d34c2eb96af93ffda2c540",
2430
- "IPY_MODEL_af0f6897c9484ab6ac626642213ebd91"
2431
  ],
2432
- "layout": "IPY_MODEL_b471cb425edf4d9891ad5f570797fe30"
2433
  }
2434
  },
2435
- "968a7e57b00841f98e610bc70aa88441": {
2436
  "model_module": "@jupyter-widgets/controls",
2437
  "model_name": "HTMLModel",
2438
  "model_module_version": "1.5.0",
@@ -2447,13 +2447,13 @@
2447
  "_view_name": "HTMLView",
2448
  "description": "",
2449
  "description_tooltip": null,
2450
- "layout": "IPY_MODEL_b2f4b8c5ceba41488f223c9710580435",
2451
  "placeholder": "​",
2452
- "style": "IPY_MODEL_1b5e650a9cdd48809f23a29b6752b982",
2453
  "value": "tokenizer_config.json: 100%"
2454
  }
2455
  },
2456
- "aded581d87d34c2eb96af93ffda2c540": {
2457
  "model_module": "@jupyter-widgets/controls",
2458
  "model_name": "FloatProgressModel",
2459
  "model_module_version": "1.5.0",
@@ -2469,15 +2469,15 @@
2469
  "bar_style": "success",
2470
  "description": "",
2471
  "description_tooltip": null,
2472
- "layout": "IPY_MODEL_82e5e653bd144679afea1e8cc29bd6c6",
2473
  "max": 51080,
2474
  "min": 0,
2475
  "orientation": "horizontal",
2476
- "style": "IPY_MODEL_f0a6c9b65c874a5ebce7afa731ab8c08",
2477
  "value": 51080
2478
  }
2479
  },
2480
- "af0f6897c9484ab6ac626642213ebd91": {
2481
  "model_module": "@jupyter-widgets/controls",
2482
  "model_name": "HTMLModel",
2483
  "model_module_version": "1.5.0",
@@ -2492,13 +2492,13 @@
2492
  "_view_name": "HTMLView",
2493
  "description": "",
2494
  "description_tooltip": null,
2495
- "layout": "IPY_MODEL_905b4d19f3f74df299a9f3174f7da80f",
2496
  "placeholder": "​",
2497
- "style": "IPY_MODEL_6c5c4ccdbe07430aa05b67037f5d46e0",
2498
- "value": " 51.1k/51.1k [00:00<00:00, 3.42MB/s]"
2499
  }
2500
  },
2501
- "b471cb425edf4d9891ad5f570797fe30": {
2502
  "model_module": "@jupyter-widgets/base",
2503
  "model_name": "LayoutModel",
2504
  "model_module_version": "1.2.0",
@@ -2550,7 +2550,7 @@
2550
  "width": null
2551
  }
2552
  },
2553
- "b2f4b8c5ceba41488f223c9710580435": {
2554
  "model_module": "@jupyter-widgets/base",
2555
  "model_name": "LayoutModel",
2556
  "model_module_version": "1.2.0",
@@ -2602,7 +2602,7 @@
2602
  "width": null
2603
  }
2604
  },
2605
- "1b5e650a9cdd48809f23a29b6752b982": {
2606
  "model_module": "@jupyter-widgets/controls",
2607
  "model_name": "DescriptionStyleModel",
2608
  "model_module_version": "1.5.0",
@@ -2617,7 +2617,7 @@
2617
  "description_width": ""
2618
  }
2619
  },
2620
- "82e5e653bd144679afea1e8cc29bd6c6": {
2621
  "model_module": "@jupyter-widgets/base",
2622
  "model_name": "LayoutModel",
2623
  "model_module_version": "1.2.0",
@@ -2669,7 +2669,7 @@
2669
  "width": null
2670
  }
2671
  },
2672
- "f0a6c9b65c874a5ebce7afa731ab8c08": {
2673
  "model_module": "@jupyter-widgets/controls",
2674
  "model_name": "ProgressStyleModel",
2675
  "model_module_version": "1.5.0",
@@ -2685,7 +2685,7 @@
2685
  "description_width": ""
2686
  }
2687
  },
2688
- "905b4d19f3f74df299a9f3174f7da80f": {
2689
  "model_module": "@jupyter-widgets/base",
2690
  "model_name": "LayoutModel",
2691
  "model_module_version": "1.2.0",
@@ -2737,7 +2737,7 @@
2737
  "width": null
2738
  }
2739
  },
2740
- "6c5c4ccdbe07430aa05b67037f5d46e0": {
2741
  "model_module": "@jupyter-widgets/controls",
2742
  "model_name": "DescriptionStyleModel",
2743
  "model_module_version": "1.5.0",
@@ -2752,7 +2752,7 @@
2752
  "description_width": ""
2753
  }
2754
  },
2755
- "53619242575348e0bf4a9f138a600627": {
2756
  "model_module": "@jupyter-widgets/controls",
2757
  "model_name": "HBoxModel",
2758
  "model_module_version": "1.5.0",
@@ -2767,14 +2767,14 @@
2767
  "_view_name": "HBoxView",
2768
  "box_style": "",
2769
  "children": [
2770
- "IPY_MODEL_2f95ba6a5df14804b39cab35f00ac61c",
2771
- "IPY_MODEL_4d2d065c6e0a49238c03f62b01ac571c",
2772
- "IPY_MODEL_57161383d6ba4d56a5e60f39e52c4022"
2773
  ],
2774
- "layout": "IPY_MODEL_d1caf63f61254e9eb287fe840d98d493"
2775
  }
2776
  },
2777
- "2f95ba6a5df14804b39cab35f00ac61c": {
2778
  "model_module": "@jupyter-widgets/controls",
2779
  "model_name": "HTMLModel",
2780
  "model_module_version": "1.5.0",
@@ -2789,13 +2789,13 @@
2789
  "_view_name": "HTMLView",
2790
  "description": "",
2791
  "description_tooltip": null,
2792
- "layout": "IPY_MODEL_1c2f84b943fa4d3f929e5de0caa9ded7",
2793
  "placeholder": "​",
2794
- "style": "IPY_MODEL_f83a42649a964b0b8e7f7c6915a8c3ee",
2795
  "value": "tokenizer.json: 100%"
2796
  }
2797
  },
2798
- "4d2d065c6e0a49238c03f62b01ac571c": {
2799
  "model_module": "@jupyter-widgets/controls",
2800
  "model_name": "FloatProgressModel",
2801
  "model_module_version": "1.5.0",
@@ -2811,15 +2811,15 @@
2811
  "bar_style": "success",
2812
  "description": "",
2813
  "description_tooltip": null,
2814
- "layout": "IPY_MODEL_34d8969c4af8450a8dbcbe7d2e4a534d",
2815
  "max": 17209920,
2816
  "min": 0,
2817
  "orientation": "horizontal",
2818
- "style": "IPY_MODEL_28e2935f56b441768b3e3eee08041a87",
2819
  "value": 17209920
2820
  }
2821
  },
2822
- "57161383d6ba4d56a5e60f39e52c4022": {
2823
  "model_module": "@jupyter-widgets/controls",
2824
  "model_name": "HTMLModel",
2825
  "model_module_version": "1.5.0",
@@ -2834,13 +2834,13 @@
2834
  "_view_name": "HTMLView",
2835
  "description": "",
2836
  "description_tooltip": null,
2837
- "layout": "IPY_MODEL_54090b4957904f968b3f50709d3c2e05",
2838
  "placeholder": "​",
2839
- "style": "IPY_MODEL_e8ba42cc64d04ae99995617f7883bd08",
2840
- "value": " 17.2M/17.2M [00:00<00:00, 43.2MB/s]"
2841
  }
2842
  },
2843
- "d1caf63f61254e9eb287fe840d98d493": {
2844
  "model_module": "@jupyter-widgets/base",
2845
  "model_name": "LayoutModel",
2846
  "model_module_version": "1.2.0",
@@ -2892,7 +2892,7 @@
2892
  "width": null
2893
  }
2894
  },
2895
- "1c2f84b943fa4d3f929e5de0caa9ded7": {
2896
  "model_module": "@jupyter-widgets/base",
2897
  "model_name": "LayoutModel",
2898
  "model_module_version": "1.2.0",
@@ -2944,7 +2944,7 @@
2944
  "width": null
2945
  }
2946
  },
2947
- "f83a42649a964b0b8e7f7c6915a8c3ee": {
2948
  "model_module": "@jupyter-widgets/controls",
2949
  "model_name": "DescriptionStyleModel",
2950
  "model_module_version": "1.5.0",
@@ -2959,7 +2959,7 @@
2959
  "description_width": ""
2960
  }
2961
  },
2962
- "34d8969c4af8450a8dbcbe7d2e4a534d": {
2963
  "model_module": "@jupyter-widgets/base",
2964
  "model_name": "LayoutModel",
2965
  "model_module_version": "1.2.0",
@@ -3011,7 +3011,7 @@
3011
  "width": null
3012
  }
3013
  },
3014
- "28e2935f56b441768b3e3eee08041a87": {
3015
  "model_module": "@jupyter-widgets/controls",
3016
  "model_name": "ProgressStyleModel",
3017
  "model_module_version": "1.5.0",
@@ -3027,7 +3027,7 @@
3027
  "description_width": ""
3028
  }
3029
  },
3030
- "54090b4957904f968b3f50709d3c2e05": {
3031
  "model_module": "@jupyter-widgets/base",
3032
  "model_name": "LayoutModel",
3033
  "model_module_version": "1.2.0",
@@ -3079,7 +3079,7 @@
3079
  "width": null
3080
  }
3081
  },
3082
- "e8ba42cc64d04ae99995617f7883bd08": {
3083
  "model_module": "@jupyter-widgets/controls",
3084
  "model_name": "DescriptionStyleModel",
3085
  "model_module_version": "1.5.0",
@@ -3094,7 +3094,7 @@
3094
  "description_width": ""
3095
  }
3096
  },
3097
- "dd04f1304c7b40e891385efb845cc709": {
3098
  "model_module": "@jupyter-widgets/controls",
3099
  "model_name": "HBoxModel",
3100
  "model_module_version": "1.5.0",
@@ -3109,14 +3109,14 @@
3109
  "_view_name": "HBoxView",
3110
  "box_style": "",
3111
  "children": [
3112
- "IPY_MODEL_8d27cf3a5aa34163af8eec4e4c8df3c6",
3113
- "IPY_MODEL_f0436804ed024d7b8ce863c6a0ee5db0",
3114
- "IPY_MODEL_5f2f204564ce46a5a61aff5697d736c5"
3115
  ],
3116
- "layout": "IPY_MODEL_00e6f34213664d75b1b98b208ac2590f"
3117
  }
3118
  },
3119
- "8d27cf3a5aa34163af8eec4e4c8df3c6": {
3120
  "model_module": "@jupyter-widgets/controls",
3121
  "model_name": "HTMLModel",
3122
  "model_module_version": "1.5.0",
@@ -3131,13 +3131,13 @@
3131
  "_view_name": "HTMLView",
3132
  "description": "",
3133
  "description_tooltip": null,
3134
- "layout": "IPY_MODEL_b419f60d083e4dc0925bc0c73cef4a0c",
3135
  "placeholder": "​",
3136
- "style": "IPY_MODEL_c20537ffff9541e29b55fadb4be126c7",
3137
  "value": "special_tokens_map.json: 100%"
3138
  }
3139
  },
3140
- "f0436804ed024d7b8ce863c6a0ee5db0": {
3141
  "model_module": "@jupyter-widgets/controls",
3142
  "model_name": "FloatProgressModel",
3143
  "model_module_version": "1.5.0",
@@ -3153,15 +3153,15 @@
3153
  "bar_style": "success",
3154
  "description": "",
3155
  "description_tooltip": null,
3156
- "layout": "IPY_MODEL_9d1234075b494c478e84cc87e5bf1676",
3157
  "max": 454,
3158
  "min": 0,
3159
  "orientation": "horizontal",
3160
- "style": "IPY_MODEL_e829709709674eb3a619a6e0f8baa272",
3161
  "value": 454
3162
  }
3163
  },
3164
- "5f2f204564ce46a5a61aff5697d736c5": {
3165
  "model_module": "@jupyter-widgets/controls",
3166
  "model_name": "HTMLModel",
3167
  "model_module_version": "1.5.0",
@@ -3176,13 +3176,13 @@
3176
  "_view_name": "HTMLView",
3177
  "description": "",
3178
  "description_tooltip": null,
3179
- "layout": "IPY_MODEL_cc822f158a4443d19d2b2f2d3ce915c4",
3180
  "placeholder": "​",
3181
- "style": "IPY_MODEL_8211fbc55c3e41238b205eb805c2dbd8",
3182
- "value": " 454/454 [00:00<00:00, 27.3kB/s]"
3183
  }
3184
  },
3185
- "00e6f34213664d75b1b98b208ac2590f": {
3186
  "model_module": "@jupyter-widgets/base",
3187
  "model_name": "LayoutModel",
3188
  "model_module_version": "1.2.0",
@@ -3234,7 +3234,7 @@
3234
  "width": null
3235
  }
3236
  },
3237
- "b419f60d083e4dc0925bc0c73cef4a0c": {
3238
  "model_module": "@jupyter-widgets/base",
3239
  "model_name": "LayoutModel",
3240
  "model_module_version": "1.2.0",
@@ -3286,7 +3286,7 @@
3286
  "width": null
3287
  }
3288
  },
3289
- "c20537ffff9541e29b55fadb4be126c7": {
3290
  "model_module": "@jupyter-widgets/controls",
3291
  "model_name": "DescriptionStyleModel",
3292
  "model_module_version": "1.5.0",
@@ -3301,7 +3301,7 @@
3301
  "description_width": ""
3302
  }
3303
  },
3304
- "9d1234075b494c478e84cc87e5bf1676": {
3305
  "model_module": "@jupyter-widgets/base",
3306
  "model_name": "LayoutModel",
3307
  "model_module_version": "1.2.0",
@@ -3353,7 +3353,7 @@
3353
  "width": null
3354
  }
3355
  },
3356
- "e829709709674eb3a619a6e0f8baa272": {
3357
  "model_module": "@jupyter-widgets/controls",
3358
  "model_name": "ProgressStyleModel",
3359
  "model_module_version": "1.5.0",
@@ -3369,7 +3369,7 @@
3369
  "description_width": ""
3370
  }
3371
  },
3372
- "cc822f158a4443d19d2b2f2d3ce915c4": {
3373
  "model_module": "@jupyter-widgets/base",
3374
  "model_name": "LayoutModel",
3375
  "model_module_version": "1.2.0",
@@ -3421,7 +3421,7 @@
3421
  "width": null
3422
  }
3423
  },
3424
- "8211fbc55c3e41238b205eb805c2dbd8": {
3425
  "model_module": "@jupyter-widgets/controls",
3426
  "model_name": "DescriptionStyleModel",
3427
  "model_module_version": "1.5.0",
@@ -3469,33 +3469,66 @@
3469
  "cell_type": "code",
3470
  "source": [
3471
  "class ChatBot:\n",
3472
- " def __init__(self, model_slug, system_message, max_tokens):\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3473
  " print(f\"Loading model {model_slug}...\")\n",
3474
  " self.pipeline = pipeline(\n",
3475
  " \"text-generation\",\n",
3476
  " model=model_slug,\n",
3477
  " device_map=\"auto\",\n",
3478
  " )\n",
3479
- " self.max_tokens = max_tokens\n",
3480
- " self.messages = [{\"role\": \"system\", \"content\": system_message}]\n",
3481
  " clear_output()\n",
3482
  " print(\"Model loaded successfully!\")\n",
3483
  "\n",
 
 
 
 
3484
  " def get_response(self, user_input):\n",
 
3485
  " self.messages.append({\"role\": \"user\", \"content\": user_input})\n",
3486
  " outputs = self.pipeline(\n",
3487
  " self.messages,\n",
3488
  " max_new_tokens=self.max_tokens,\n",
3489
  " do_sample=True,\n",
3490
- " temperature=0.01,\n",
3491
- " top_k=100,\n",
3492
- " top_p=0.95\n",
3493
  " )\n",
3494
  " response = outputs[0][\"generated_text\"][-1]\n",
3495
- " # Since response is already a dictionary, just access content directly\n",
3496
  " content = response.get('content', 'No content available')\n",
3497
  " self.messages.append({\"role\": \"assistant\", \"content\": content})\n",
3498
- " return content # Return only the content"
 
 
 
 
 
 
 
 
 
 
 
3499
  ],
3500
  "metadata": {
3501
  "id": "v4uIN6uIeyl3"
@@ -3506,11 +3539,24 @@
3506
  {
3507
  "cell_type": "code",
3508
  "source": [
3509
- "def run_chatbot(model=\"pankajmathur/orca_mini_v9_5_3B-Instruct\",\n",
3510
- " system_message=\"You are Orca Mini, You are expert in coding, math and logic, Think step by step before coming up with final answer\",\n",
3511
- " max_tokens=1024):\n",
 
 
 
 
 
3512
  " try:\n",
3513
- " chatbot = ChatBot(model, system_message, max_tokens)\n",
 
 
 
 
 
 
 
 
3514
  " print(\"Chatbot: Hi! Type 'quit' to exit.\")\n",
3515
  "\n",
3516
  " while True:\n",
@@ -3523,8 +3569,9 @@
3523
  " except Exception as e:\n",
3524
  " print(f\"Chatbot: An error occurred: {str(e)}\")\n",
3525
  " print(\"Please try again.\")\n",
 
3526
  " except Exception as e:\n",
3527
- " print(f\"Error initializing chatbot: {str(e)}\")"
3528
  ],
3529
  "metadata": {
3530
  "id": "H2n_6Xcue3Vn"
@@ -3535,137 +3582,129 @@
3535
  {
3536
  "cell_type": "code",
3537
  "source": [
3538
- "# Run with default parameters\n",
3539
- "run_chatbot()\n",
3540
- "\n",
3541
- "# # Or run with custom parameters\n",
3542
- "# run_chatbot(\n",
3543
- "# model=\"custom/model\",\n",
3544
- "# system_message=\"Custom system message\",\n",
3545
- "# max_tokens=256\n",
3546
- "# )"
3547
  ],
3548
  "metadata": {
3549
  "colab": {
3550
  "base_uri": "https://localhost:8080/",
3551
- "height": 496,
3552
  "referenced_widgets": [
3553
- "e9385ef87e2344e695c0c796b688c9d7",
3554
- "7c09c69438c34f348824018d398763ee",
3555
- "0161ce085acf480c8c3f543038f8e7a0",
3556
- "9f3245f1ed614cc098ae3b699ffb2775",
3557
- "47183797a4f94f81814d3437d452a66d",
3558
- "3015fc9e94364db6b97c61801fc2ac65",
3559
- "9811b8e61d684726a45db85a2c47c02c",
3560
- "ac74cde7b3ff45558d5f7301e2d48e5c",
3561
- "a64363a41bbb4fa3a6a75c67fbead9a3",
3562
- "e5e618fbe3164aa5ab8afcb9e01b86e1",
3563
- "88b5dee8edf8477cbd5ffb19f0d2ffc9",
3564
- "055a2876ed374bbb95eec05fc6d6995e",
3565
- "d3dc3be579c74716ad5901f57d683609",
3566
- "9ffd55366beb463a964abb9298393761",
3567
- "7b626153ae1144dfb227e3d0cfc2a994",
3568
- "e05eb84b1fef4d639228eca7f6eb645e",
3569
- "91face3b5b2c4f908ff635866ec4a5a3",
3570
- "6a0c9cde0397400493320415ad09d5dc",
3571
- "f5494578f0d443918be7340d8b715fa1",
3572
- "121d66518e8046b780cd82c3bc38f9ac",
3573
- "1380bfe1aba54f17b9e23d5bede70216",
3574
- "f2f570c85b8540d281cff7d8a46015e0",
3575
- "fd1fb017d77b4fc8b441a20ba879fd55",
3576
- "d125b3abe5654324bac391440fce5d99",
3577
- "be88ed9383274a4e8110e48686acbcd9",
3578
- "f30782567b0143ae872aaf64b2fa6c97",
3579
- "5837a5a5d9a940abac33214b6790cfdf",
3580
- "db348d98b30240e7a8aaa81f6694baf0",
3581
- "54bdc4db6565499bb4e6e49177724e5c",
3582
- "30315982072d46db87cfdc180a27b592",
3583
- "c1aa671e8cfd4c56925c1465b8a80575",
3584
- "dcc618142d6d41ceafab50eff14e9538",
3585
- "e613282e576d4e63bdd7f6fd8cad8f9e",
3586
- "d3866446d9ca475296f8abed6433d57b",
3587
- "8ce19b289c994fbd85872ce3b549a3bd",
3588
- "61a921fafea6412285bf3d773bb35d38",
3589
- "b74b7548badc4b06996eed42ef5aac23",
3590
- "ab44258e51894fd5bafe16c3360d13d1",
3591
- "dd11c8d47c594a529e8be13d724b1418",
3592
- "a4e8936c5d084e5db41a0b1e5d36dcf5",
3593
- "7c878a8e653548bb988bc6cf7a560172",
3594
- "5c17e2956ca04940845bb623c453a5d6",
3595
- "c5a28ec8b9364afead0427882457b408",
3596
- "38ec15ed776c4c4dad55acdb897171c3",
3597
- "6045c69a660b441b9466082caaa93753",
3598
- "12ad12e582f14082a4747f11df6801a0",
3599
- "59091c96637c46029a7c22d2e911b23b",
3600
- "627e7d6f2a474c18af69a49d0e3c1fb9",
3601
- "b76d647c92b8453585111fa03e93a5db",
3602
- "2e30d5e081a34947a3d47cd4f233ee36",
3603
- "7b90ce7832f64fdf9e2ef7ed505cf168",
3604
- "8780e2ef94dd4884a79d4537ce602a9a",
3605
- "20903107a3ca449da9126d3097cb52a0",
3606
- "5a9bb8b3141e42f0a2262a6dc9618b91",
3607
- "56460eb57c694c358f2cc69f3ddcff21",
3608
- "c99c59ac7b5e4e99b8074b00b2ee8429",
3609
- "cdb0e079d46c4198a79fd13f9502eb97",
3610
- "a408957f3d8e49db8231513cbd9648fc",
3611
- "e1ccf915d9344b019bb58d4cb6eed648",
3612
- "ad8b090a922b4ff4af120a8bc9927df8",
3613
- "c8e6a1bbdc2642c3ab1be678bdc43720",
3614
- "ccdce67075aa4496b16d0897ef58ef5c",
3615
- "43530e8b5d18483e81074dec4dbac234",
3616
- "2ef7d26371414fe1adefc3ea2a4cacd0",
3617
- "3b8b7592616d4a068a0da9d49b32a5a2",
3618
- "6f2b9a3456dc468a941ead8c33752d3c",
3619
- "df820f68237d4abdabf22ae882cdff49",
3620
- "3e00e9c282ca4d9ab88aa03240617a39",
3621
- "de860be1db594e5c951d081536d78647",
3622
- "b7b91104e6a74424bb465bb36e66bf83",
3623
- "8111b2c14a68442e94554fd839b2d6b1",
3624
- "288a4f0fb77341f398335f4cca2878ff",
3625
- "f5853b816fe3452f90c44451d5080b4b",
3626
- "1e5761d5549d4ab580cbe329ce55de2a",
3627
- "55c169fabf7b4e1090465a77e4c824fc",
3628
- "4d630bd1921e42199672d35bccbdd1a4",
3629
- "e925a447b0ba4b96816adf960eecd36b",
3630
- "bb82142059604f709f287cd3e0b4de08",
3631
- "968a7e57b00841f98e610bc70aa88441",
3632
- "aded581d87d34c2eb96af93ffda2c540",
3633
- "af0f6897c9484ab6ac626642213ebd91",
3634
- "b471cb425edf4d9891ad5f570797fe30",
3635
- "b2f4b8c5ceba41488f223c9710580435",
3636
- "1b5e650a9cdd48809f23a29b6752b982",
3637
- "82e5e653bd144679afea1e8cc29bd6c6",
3638
- "f0a6c9b65c874a5ebce7afa731ab8c08",
3639
- "905b4d19f3f74df299a9f3174f7da80f",
3640
- "6c5c4ccdbe07430aa05b67037f5d46e0",
3641
- "53619242575348e0bf4a9f138a600627",
3642
- "2f95ba6a5df14804b39cab35f00ac61c",
3643
- "4d2d065c6e0a49238c03f62b01ac571c",
3644
- "57161383d6ba4d56a5e60f39e52c4022",
3645
- "d1caf63f61254e9eb287fe840d98d493",
3646
- "1c2f84b943fa4d3f929e5de0caa9ded7",
3647
- "f83a42649a964b0b8e7f7c6915a8c3ee",
3648
- "34d8969c4af8450a8dbcbe7d2e4a534d",
3649
- "28e2935f56b441768b3e3eee08041a87",
3650
- "54090b4957904f968b3f50709d3c2e05",
3651
- "e8ba42cc64d04ae99995617f7883bd08",
3652
- "dd04f1304c7b40e891385efb845cc709",
3653
- "8d27cf3a5aa34163af8eec4e4c8df3c6",
3654
- "f0436804ed024d7b8ce863c6a0ee5db0",
3655
- "5f2f204564ce46a5a61aff5697d736c5",
3656
- "00e6f34213664d75b1b98b208ac2590f",
3657
- "b419f60d083e4dc0925bc0c73cef4a0c",
3658
- "c20537ffff9541e29b55fadb4be126c7",
3659
- "9d1234075b494c478e84cc87e5bf1676",
3660
- "e829709709674eb3a619a6e0f8baa272",
3661
- "cc822f158a4443d19d2b2f2d3ce915c4",
3662
- "8211fbc55c3e41238b205eb805c2dbd8"
3663
  ]
3664
  },
3665
  "id": "JEqgoAH2fC6h",
3666
- "outputId": "8327d8cc-9329-48ff-b66b-a7ba6a477596"
3667
  },
3668
- "execution_count": null,
3669
  "outputs": [
3670
  {
3671
  "output_type": "stream",
@@ -3673,37 +3712,96 @@
3673
  "text": [
3674
  "Model loaded successfully!\n",
3675
  "Chatbot: Hi! Type 'quit' to exit.\n",
3676
- "You: what can you do?\n",
3677
- "Chatbot: As an expert in coding, math, and logic, I can perform a variety of tasks. Here are some examples:\n",
3678
  "\n",
3679
- "1. Solve complex mathematical problems: I can solve problems involving algebra, geometry, trigonometry, calculus, and more.\n",
3680
  "\n",
3681
- "2. Code: I can write code in various programming languages, including Python, Java, C++, and JavaScript, among others.\n",
 
 
 
 
 
 
 
 
 
 
 
 
3682
  "\n",
3683
- "3. Provide logical reasoning: I can analyze problems and provide step-by-step solutions, breaking down complex problems into manageable parts.\n",
3684
  "\n",
3685
- "4. Identify patterns: I can identify patterns in data and use this information to make predictions or solve problems.\n",
3686
  "\n",
3687
- "5. Generate algorithms: I can create algorithms to solve specific problems or optimize processes.\n",
3688
  "\n",
3689
- "6. Translate text: I can translate text from one language to another, using my knowledge of various languages.\n",
 
 
3690
  "\n",
3691
- "7. Summarize content: I can summarize long pieces of text into shorter, more digestible versions.\n",
3692
  "\n",
3693
- "8. Answer trivia questions: I can answer questions on a wide range of topics, from history to science to pop culture.\n",
 
 
 
 
 
3694
  "\n",
3695
- "9. Provide definitions: I can provide definitions for words and phrases, helping to clarify their meanings.\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3696
  "\n",
3697
- "10. Engage in conversations: I can engage in natural-sounding conversations, using context and understanding to respond to questions and statements.\n",
3698
  "\n",
3699
- "These are just a few examples of what I can do. If you have a specific question or problem you'd like help with, feel free to ask!\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3700
  ]
3701
  }
3702
  ]
3703
  },
3704
  {
3705
  "cell_type": "code",
3706
- "source": [],
 
 
 
 
 
 
 
3707
  "metadata": {
3708
  "id": "tGW8wsfAfHDf"
3709
  },
 
16
  "accelerator": "GPU",
17
  "widgets": {
18
  "application/vnd.jupyter.widget-state+json": {
19
+ "637f41ae2ab14c06943a5ec2ce8c4242": {
20
  "model_module": "@jupyter-widgets/controls",
21
  "model_name": "HBoxModel",
22
  "model_module_version": "1.5.0",
 
31
  "_view_name": "HBoxView",
32
  "box_style": "",
33
  "children": [
34
+ "IPY_MODEL_7e5eec1572604af08834025f46f2d8f3",
35
+ "IPY_MODEL_149308c908fb46a8a1e028996e174ec5",
36
+ "IPY_MODEL_26cc90124bc542bcb101eb4682f65159"
37
  ],
38
+ "layout": "IPY_MODEL_ff9be360146a4d07be6fa2ffe3c8fe1d"
39
  }
40
  },
41
+ "7e5eec1572604af08834025f46f2d8f3": {
42
  "model_module": "@jupyter-widgets/controls",
43
  "model_name": "HTMLModel",
44
  "model_module_version": "1.5.0",
 
53
  "_view_name": "HTMLView",
54
  "description": "",
55
  "description_tooltip": null,
56
+ "layout": "IPY_MODEL_93a47770ec514e218fa7477af0671671",
57
  "placeholder": "​",
58
+ "style": "IPY_MODEL_a724fce5d23e4756a3c34bbf9f4f6a06",
59
  "value": "config.json: 100%"
60
  }
61
  },
62
+ "149308c908fb46a8a1e028996e174ec5": {
63
  "model_module": "@jupyter-widgets/controls",
64
  "model_name": "FloatProgressModel",
65
  "model_module_version": "1.5.0",
 
75
  "bar_style": "success",
76
  "description": "",
77
  "description_tooltip": null,
78
+ "layout": "IPY_MODEL_bd8ce53127c54f82a0282c25c45941c3",
79
  "max": 895,
80
  "min": 0,
81
  "orientation": "horizontal",
82
+ "style": "IPY_MODEL_09e687a3660e429ab54fd662af0cad67",
83
  "value": 895
84
  }
85
  },
86
+ "26cc90124bc542bcb101eb4682f65159": {
87
  "model_module": "@jupyter-widgets/controls",
88
  "model_name": "HTMLModel",
89
  "model_module_version": "1.5.0",
 
98
  "_view_name": "HTMLView",
99
  "description": "",
100
  "description_tooltip": null,
101
+ "layout": "IPY_MODEL_93f53e66cd764eedbcaef25933540820",
102
  "placeholder": "​",
103
+ "style": "IPY_MODEL_ab04d29b53d5454197b6afb81456a7af",
104
+ "value": " 895/895 [00:00<00:00, 31.1kB/s]"
105
  }
106
  },
107
+ "ff9be360146a4d07be6fa2ffe3c8fe1d": {
108
  "model_module": "@jupyter-widgets/base",
109
  "model_name": "LayoutModel",
110
  "model_module_version": "1.2.0",
 
156
  "width": null
157
  }
158
  },
159
+ "93a47770ec514e218fa7477af0671671": {
160
  "model_module": "@jupyter-widgets/base",
161
  "model_name": "LayoutModel",
162
  "model_module_version": "1.2.0",
 
208
  "width": null
209
  }
210
  },
211
+ "a724fce5d23e4756a3c34bbf9f4f6a06": {
212
  "model_module": "@jupyter-widgets/controls",
213
  "model_name": "DescriptionStyleModel",
214
  "model_module_version": "1.5.0",
 
223
  "description_width": ""
224
  }
225
  },
226
+ "bd8ce53127c54f82a0282c25c45941c3": {
227
  "model_module": "@jupyter-widgets/base",
228
  "model_name": "LayoutModel",
229
  "model_module_version": "1.2.0",
 
275
  "width": null
276
  }
277
  },
278
+ "09e687a3660e429ab54fd662af0cad67": {
279
  "model_module": "@jupyter-widgets/controls",
280
  "model_name": "ProgressStyleModel",
281
  "model_module_version": "1.5.0",
 
291
  "description_width": ""
292
  }
293
  },
294
+ "93f53e66cd764eedbcaef25933540820": {
295
  "model_module": "@jupyter-widgets/base",
296
  "model_name": "LayoutModel",
297
  "model_module_version": "1.2.0",
 
343
  "width": null
344
  }
345
  },
346
+ "ab04d29b53d5454197b6afb81456a7af": {
347
  "model_module": "@jupyter-widgets/controls",
348
  "model_name": "DescriptionStyleModel",
349
  "model_module_version": "1.5.0",
 
358
  "description_width": ""
359
  }
360
  },
361
+ "604f93fbbca04199a04458ac645af230": {
362
  "model_module": "@jupyter-widgets/controls",
363
  "model_name": "HBoxModel",
364
  "model_module_version": "1.5.0",
 
373
  "_view_name": "HBoxView",
374
  "box_style": "",
375
  "children": [
376
+ "IPY_MODEL_7e6cb3cd05524ac2860f4272113e6139",
377
+ "IPY_MODEL_03b47f01d0e54c1793097e261a099b21",
378
+ "IPY_MODEL_e92d60d05744419da2a7065035c6f292"
379
  ],
380
+ "layout": "IPY_MODEL_ab601e55b56d4ea3b6c755ca4a497606"
381
  }
382
  },
383
+ "7e6cb3cd05524ac2860f4272113e6139": {
384
  "model_module": "@jupyter-widgets/controls",
385
  "model_name": "HTMLModel",
386
  "model_module_version": "1.5.0",
 
395
  "_view_name": "HTMLView",
396
  "description": "",
397
  "description_tooltip": null,
398
+ "layout": "IPY_MODEL_77263d2b6959427b91ffb19d260a2865",
399
  "placeholder": "​",
400
+ "style": "IPY_MODEL_1b932349856c48b09e8780f433ea8828",
401
  "value": "model.safetensors.index.json: 100%"
402
  }
403
  },
404
+ "03b47f01d0e54c1793097e261a099b21": {
405
  "model_module": "@jupyter-widgets/controls",
406
  "model_name": "FloatProgressModel",
407
  "model_module_version": "1.5.0",
 
417
  "bar_style": "success",
418
  "description": "",
419
  "description_tooltip": null,
420
+ "layout": "IPY_MODEL_a0a5689e2f534fa5a07ca9130ac25bca",
421
  "max": 22008,
422
  "min": 0,
423
  "orientation": "horizontal",
424
+ "style": "IPY_MODEL_0a95b43354c5409f947e4bebfb6303c4",
425
  "value": 22008
426
  }
427
  },
428
+ "e92d60d05744419da2a7065035c6f292": {
429
  "model_module": "@jupyter-widgets/controls",
430
  "model_name": "HTMLModel",
431
  "model_module_version": "1.5.0",
 
440
  "_view_name": "HTMLView",
441
  "description": "",
442
  "description_tooltip": null,
443
+ "layout": "IPY_MODEL_e66d6a5b09314e038594e9d5c8c1d37a",
444
  "placeholder": "​",
445
+ "style": "IPY_MODEL_8f26b2720259475d870c9463e3b66036",
446
+ "value": " 22.0k/22.0k [00:00<00:00, 696kB/s]"
447
  }
448
  },
449
+ "ab601e55b56d4ea3b6c755ca4a497606": {
450
  "model_module": "@jupyter-widgets/base",
451
  "model_name": "LayoutModel",
452
  "model_module_version": "1.2.0",
 
498
  "width": null
499
  }
500
  },
501
+ "77263d2b6959427b91ffb19d260a2865": {
502
  "model_module": "@jupyter-widgets/base",
503
  "model_name": "LayoutModel",
504
  "model_module_version": "1.2.0",
 
550
  "width": null
551
  }
552
  },
553
+ "1b932349856c48b09e8780f433ea8828": {
554
  "model_module": "@jupyter-widgets/controls",
555
  "model_name": "DescriptionStyleModel",
556
  "model_module_version": "1.5.0",
 
565
  "description_width": ""
566
  }
567
  },
568
+ "a0a5689e2f534fa5a07ca9130ac25bca": {
569
  "model_module": "@jupyter-widgets/base",
570
  "model_name": "LayoutModel",
571
  "model_module_version": "1.2.0",
 
617
  "width": null
618
  }
619
  },
620
+ "0a95b43354c5409f947e4bebfb6303c4": {
621
  "model_module": "@jupyter-widgets/controls",
622
  "model_name": "ProgressStyleModel",
623
  "model_module_version": "1.5.0",
 
633
  "description_width": ""
634
  }
635
  },
636
+ "e66d6a5b09314e038594e9d5c8c1d37a": {
637
  "model_module": "@jupyter-widgets/base",
638
  "model_name": "LayoutModel",
639
  "model_module_version": "1.2.0",
 
685
  "width": null
686
  }
687
  },
688
+ "8f26b2720259475d870c9463e3b66036": {
689
  "model_module": "@jupyter-widgets/controls",
690
  "model_name": "DescriptionStyleModel",
691
  "model_module_version": "1.5.0",
 
700
  "description_width": ""
701
  }
702
  },
703
+ "d0b05eb0ca5940a2a919644606492913": {
704
  "model_module": "@jupyter-widgets/controls",
705
  "model_name": "HBoxModel",
706
  "model_module_version": "1.5.0",
 
715
  "_view_name": "HBoxView",
716
  "box_style": "",
717
  "children": [
718
+ "IPY_MODEL_6725133cc67b419c8c46c9be3ab732b4",
719
+ "IPY_MODEL_defbdb2da412468d96f037f18f41208f",
720
+ "IPY_MODEL_462f587404ef4844b9fe20dfe2fc180e"
721
  ],
722
+ "layout": "IPY_MODEL_a9343873ea5743579839d0c160e3b6e5"
723
  }
724
  },
725
+ "6725133cc67b419c8c46c9be3ab732b4": {
726
  "model_module": "@jupyter-widgets/controls",
727
  "model_name": "HTMLModel",
728
  "model_module_version": "1.5.0",
 
737
  "_view_name": "HTMLView",
738
  "description": "",
739
  "description_tooltip": null,
740
+ "layout": "IPY_MODEL_4167e6137e954d26932fa06200bd9776",
741
  "placeholder": "​",
742
+ "style": "IPY_MODEL_5ab07d142b664b4f831f9154796f8223",
743
  "value": "Downloading shards: 100%"
744
  }
745
  },
746
+ "defbdb2da412468d96f037f18f41208f": {
747
  "model_module": "@jupyter-widgets/controls",
748
  "model_name": "FloatProgressModel",
749
  "model_module_version": "1.5.0",
 
759
  "bar_style": "success",
760
  "description": "",
761
  "description_tooltip": null,
762
+ "layout": "IPY_MODEL_412217338ab94e66be46a2db94bc50d2",
763
  "max": 2,
764
  "min": 0,
765
  "orientation": "horizontal",
766
+ "style": "IPY_MODEL_561a5a6d05d849989c21e8cd866ef0d0",
767
  "value": 2
768
  }
769
  },
770
+ "462f587404ef4844b9fe20dfe2fc180e": {
771
  "model_module": "@jupyter-widgets/controls",
772
  "model_name": "HTMLModel",
773
  "model_module_version": "1.5.0",
 
782
  "_view_name": "HTMLView",
783
  "description": "",
784
  "description_tooltip": null,
785
+ "layout": "IPY_MODEL_049eda868c854f8cb9ad229b3daf07b4",
786
  "placeholder": "​",
787
+ "style": "IPY_MODEL_84d38e8a604542c7b5ae11222dbe0736",
788
+ "value": " 2/2 [02:32<00:00, 68.85s/it]"
789
  }
790
  },
791
+ "a9343873ea5743579839d0c160e3b6e5": {
792
  "model_module": "@jupyter-widgets/base",
793
  "model_name": "LayoutModel",
794
  "model_module_version": "1.2.0",
 
840
  "width": null
841
  }
842
  },
843
+ "4167e6137e954d26932fa06200bd9776": {
844
  "model_module": "@jupyter-widgets/base",
845
  "model_name": "LayoutModel",
846
  "model_module_version": "1.2.0",
 
892
  "width": null
893
  }
894
  },
895
+ "5ab07d142b664b4f831f9154796f8223": {
896
  "model_module": "@jupyter-widgets/controls",
897
  "model_name": "DescriptionStyleModel",
898
  "model_module_version": "1.5.0",
 
907
  "description_width": ""
908
  }
909
  },
910
+ "412217338ab94e66be46a2db94bc50d2": {
911
  "model_module": "@jupyter-widgets/base",
912
  "model_name": "LayoutModel",
913
  "model_module_version": "1.2.0",
 
959
  "width": null
960
  }
961
  },
962
+ "561a5a6d05d849989c21e8cd866ef0d0": {
963
  "model_module": "@jupyter-widgets/controls",
964
  "model_name": "ProgressStyleModel",
965
  "model_module_version": "1.5.0",
 
975
  "description_width": ""
976
  }
977
  },
978
+ "049eda868c854f8cb9ad229b3daf07b4": {
979
  "model_module": "@jupyter-widgets/base",
980
  "model_name": "LayoutModel",
981
  "model_module_version": "1.2.0",
 
1027
  "width": null
1028
  }
1029
  },
1030
+ "84d38e8a604542c7b5ae11222dbe0736": {
1031
  "model_module": "@jupyter-widgets/controls",
1032
  "model_name": "DescriptionStyleModel",
1033
  "model_module_version": "1.5.0",
 
1042
  "description_width": ""
1043
  }
1044
  },
1045
+ "934127ff77ad40e5a8b4a6bf49e1c99a": {
1046
  "model_module": "@jupyter-widgets/controls",
1047
  "model_name": "HBoxModel",
1048
  "model_module_version": "1.5.0",
 
1057
  "_view_name": "HBoxView",
1058
  "box_style": "",
1059
  "children": [
1060
+ "IPY_MODEL_97b70100dbd94fec845b4a5957d80275",
1061
+ "IPY_MODEL_07820ad0a128448fb68cb9933e587c36",
1062
+ "IPY_MODEL_cf53697ff88241b581268b5a2968ab5d"
1063
  ],
1064
+ "layout": "IPY_MODEL_a72880ed0a3a47859ad3de21117b3bb7"
1065
  }
1066
  },
1067
+ "97b70100dbd94fec845b4a5957d80275": {
1068
  "model_module": "@jupyter-widgets/controls",
1069
  "model_name": "HTMLModel",
1070
  "model_module_version": "1.5.0",
 
1079
  "_view_name": "HTMLView",
1080
  "description": "",
1081
  "description_tooltip": null,
1082
+ "layout": "IPY_MODEL_ad08221fce8f4a098f481eb52a7da715",
1083
  "placeholder": "​",
1084
+ "style": "IPY_MODEL_eb36602b1de9450198a8211c3e61801e",
1085
  "value": "model-00001-of-00002.safetensors: 100%"
1086
  }
1087
  },
1088
+ "07820ad0a128448fb68cb9933e587c36": {
1089
  "model_module": "@jupyter-widgets/controls",
1090
  "model_name": "FloatProgressModel",
1091
  "model_module_version": "1.5.0",
 
1101
  "bar_style": "success",
1102
  "description": "",
1103
  "description_tooltip": null,
1104
+ "layout": "IPY_MODEL_7046c073168047718dd43658538f8311",
1105
  "max": 4965799144,
1106
  "min": 0,
1107
  "orientation": "horizontal",
1108
+ "style": "IPY_MODEL_327100e640964301b471bdbf44a8cc92",
1109
  "value": 4965799144
1110
  }
1111
  },
1112
+ "cf53697ff88241b581268b5a2968ab5d": {
1113
  "model_module": "@jupyter-widgets/controls",
1114
  "model_name": "HTMLModel",
1115
  "model_module_version": "1.5.0",
 
1124
  "_view_name": "HTMLView",
1125
  "description": "",
1126
  "description_tooltip": null,
1127
+ "layout": "IPY_MODEL_9e23ae17098949a4be5d47cabd7197e6",
1128
  "placeholder": "​",
1129
+ "style": "IPY_MODEL_4966b5a8be4d456aacf728c531d37799",
1130
+ "value": " 4.97G/4.97G [01:57<00:00, 42.7MB/s]"
1131
  }
1132
  },
1133
+ "a72880ed0a3a47859ad3de21117b3bb7": {
1134
  "model_module": "@jupyter-widgets/base",
1135
  "model_name": "LayoutModel",
1136
  "model_module_version": "1.2.0",
 
1182
  "width": null
1183
  }
1184
  },
1185
+ "ad08221fce8f4a098f481eb52a7da715": {
1186
  "model_module": "@jupyter-widgets/base",
1187
  "model_name": "LayoutModel",
1188
  "model_module_version": "1.2.0",
 
1234
  "width": null
1235
  }
1236
  },
1237
+ "eb36602b1de9450198a8211c3e61801e": {
1238
  "model_module": "@jupyter-widgets/controls",
1239
  "model_name": "DescriptionStyleModel",
1240
  "model_module_version": "1.5.0",
 
1249
  "description_width": ""
1250
  }
1251
  },
1252
+ "7046c073168047718dd43658538f8311": {
1253
  "model_module": "@jupyter-widgets/base",
1254
  "model_name": "LayoutModel",
1255
  "model_module_version": "1.2.0",
 
1301
  "width": null
1302
  }
1303
  },
1304
+ "327100e640964301b471bdbf44a8cc92": {
1305
  "model_module": "@jupyter-widgets/controls",
1306
  "model_name": "ProgressStyleModel",
1307
  "model_module_version": "1.5.0",
 
1317
  "description_width": ""
1318
  }
1319
  },
1320
+ "9e23ae17098949a4be5d47cabd7197e6": {
1321
  "model_module": "@jupyter-widgets/base",
1322
  "model_name": "LayoutModel",
1323
  "model_module_version": "1.2.0",
 
1369
  "width": null
1370
  }
1371
  },
1372
+ "4966b5a8be4d456aacf728c531d37799": {
1373
  "model_module": "@jupyter-widgets/controls",
1374
  "model_name": "DescriptionStyleModel",
1375
  "model_module_version": "1.5.0",
 
1384
  "description_width": ""
1385
  }
1386
  },
1387
+ "0efac0e8c0d148d0979e654189341bf1": {
1388
  "model_module": "@jupyter-widgets/controls",
1389
  "model_name": "HBoxModel",
1390
  "model_module_version": "1.5.0",
 
1399
  "_view_name": "HBoxView",
1400
  "box_style": "",
1401
  "children": [
1402
+ "IPY_MODEL_8913e7df99fb44cdb05d3a76b3cdccce",
1403
+ "IPY_MODEL_3f54f55d312d4c7c9e5a83f55eda18cf",
1404
+ "IPY_MODEL_0c4a040d86cd43e3b4771b6df80cad6a"
1405
  ],
1406
+ "layout": "IPY_MODEL_088cf400027343158e9e985437252437"
1407
  }
1408
  },
1409
+ "8913e7df99fb44cdb05d3a76b3cdccce": {
1410
  "model_module": "@jupyter-widgets/controls",
1411
  "model_name": "HTMLModel",
1412
  "model_module_version": "1.5.0",
 
1421
  "_view_name": "HTMLView",
1422
  "description": "",
1423
  "description_tooltip": null,
1424
+ "layout": "IPY_MODEL_a431e4bb083a4fcb95623fc1d78d572d",
1425
  "placeholder": "​",
1426
+ "style": "IPY_MODEL_af18ee5bf6594b4f96782165a11b4343",
1427
  "value": "model-00002-of-00002.safetensors: 100%"
1428
  }
1429
  },
1430
+ "3f54f55d312d4c7c9e5a83f55eda18cf": {
1431
  "model_module": "@jupyter-widgets/controls",
1432
  "model_name": "FloatProgressModel",
1433
  "model_module_version": "1.5.0",
 
1443
  "bar_style": "success",
1444
  "description": "",
1445
  "description_tooltip": null,
1446
+ "layout": "IPY_MODEL_a4a7fcbac66e43a88740bd4952e73096",
1447
  "max": 1459729952,
1448
  "min": 0,
1449
  "orientation": "horizontal",
1450
+ "style": "IPY_MODEL_834248ac782e4aa7991c87e84e08726a",
1451
  "value": 1459729952
1452
  }
1453
  },
1454
+ "0c4a040d86cd43e3b4771b6df80cad6a": {
1455
  "model_module": "@jupyter-widgets/controls",
1456
  "model_name": "HTMLModel",
1457
  "model_module_version": "1.5.0",
 
1466
  "_view_name": "HTMLView",
1467
  "description": "",
1468
  "description_tooltip": null,
1469
+ "layout": "IPY_MODEL_e4fec6c8ae6c4c4491bac27bdb2aba75",
1470
  "placeholder": "​",
1471
+ "style": "IPY_MODEL_dfd88327d2954b5093b55ab98a99e467",
1472
+ "value": " 1.46G/1.46G [00:34<00:00, 41.6MB/s]"
1473
  }
1474
  },
1475
+ "088cf400027343158e9e985437252437": {
1476
  "model_module": "@jupyter-widgets/base",
1477
  "model_name": "LayoutModel",
1478
  "model_module_version": "1.2.0",
 
1524
  "width": null
1525
  }
1526
  },
1527
+ "a431e4bb083a4fcb95623fc1d78d572d": {
1528
  "model_module": "@jupyter-widgets/base",
1529
  "model_name": "LayoutModel",
1530
  "model_module_version": "1.2.0",
 
1576
  "width": null
1577
  }
1578
  },
1579
+ "af18ee5bf6594b4f96782165a11b4343": {
1580
  "model_module": "@jupyter-widgets/controls",
1581
  "model_name": "DescriptionStyleModel",
1582
  "model_module_version": "1.5.0",
 
1591
  "description_width": ""
1592
  }
1593
  },
1594
+ "a4a7fcbac66e43a88740bd4952e73096": {
1595
  "model_module": "@jupyter-widgets/base",
1596
  "model_name": "LayoutModel",
1597
  "model_module_version": "1.2.0",
 
1643
  "width": null
1644
  }
1645
  },
1646
+ "834248ac782e4aa7991c87e84e08726a": {
1647
  "model_module": "@jupyter-widgets/controls",
1648
  "model_name": "ProgressStyleModel",
1649
  "model_module_version": "1.5.0",
 
1659
  "description_width": ""
1660
  }
1661
  },
1662
+ "e4fec6c8ae6c4c4491bac27bdb2aba75": {
1663
  "model_module": "@jupyter-widgets/base",
1664
  "model_name": "LayoutModel",
1665
  "model_module_version": "1.2.0",
 
1711
  "width": null
1712
  }
1713
  },
1714
+ "dfd88327d2954b5093b55ab98a99e467": {
1715
  "model_module": "@jupyter-widgets/controls",
1716
  "model_name": "DescriptionStyleModel",
1717
  "model_module_version": "1.5.0",
 
1726
  "description_width": ""
1727
  }
1728
  },
1729
+ "35dab978ecb4465cbe8d99a4005c3eca": {
1730
  "model_module": "@jupyter-widgets/controls",
1731
  "model_name": "HBoxModel",
1732
  "model_module_version": "1.5.0",
 
1741
  "_view_name": "HBoxView",
1742
  "box_style": "",
1743
  "children": [
1744
+ "IPY_MODEL_932cd09a51fb4fa1842ac2ba38e7a996",
1745
+ "IPY_MODEL_a2a7bbba58dd4119872ee694eec7b869",
1746
+ "IPY_MODEL_dd8696a9341a467f853b882c997e7454"
1747
  ],
1748
+ "layout": "IPY_MODEL_e6e3c978a1a64d34a8d21561c4b5ef9b"
1749
  }
1750
  },
1751
+ "932cd09a51fb4fa1842ac2ba38e7a996": {
1752
  "model_module": "@jupyter-widgets/controls",
1753
  "model_name": "HTMLModel",
1754
  "model_module_version": "1.5.0",
 
1763
  "_view_name": "HTMLView",
1764
  "description": "",
1765
  "description_tooltip": null,
1766
+ "layout": "IPY_MODEL_ec8a5a4a858b464b96b29329180f3673",
1767
  "placeholder": "​",
1768
+ "style": "IPY_MODEL_bf2eac5e2dc648fa9df98217a0f56184",
1769
  "value": "Loading checkpoint shards: 100%"
1770
  }
1771
  },
1772
+ "a2a7bbba58dd4119872ee694eec7b869": {
1773
  "model_module": "@jupyter-widgets/controls",
1774
  "model_name": "FloatProgressModel",
1775
  "model_module_version": "1.5.0",
 
1785
  "bar_style": "success",
1786
  "description": "",
1787
  "description_tooltip": null,
1788
+ "layout": "IPY_MODEL_57c88788ec5e441e8bad7e56be410fb9",
1789
  "max": 2,
1790
  "min": 0,
1791
  "orientation": "horizontal",
1792
+ "style": "IPY_MODEL_92389a57eff34d0fa9289f72763a4461",
1793
  "value": 2
1794
  }
1795
  },
1796
+ "dd8696a9341a467f853b882c997e7454": {
1797
  "model_module": "@jupyter-widgets/controls",
1798
  "model_name": "HTMLModel",
1799
  "model_module_version": "1.5.0",
 
1808
  "_view_name": "HTMLView",
1809
  "description": "",
1810
  "description_tooltip": null,
1811
+ "layout": "IPY_MODEL_4727819fea9942a484da549b89734b09",
1812
  "placeholder": "​",
1813
+ "style": "IPY_MODEL_6ce6eff7389541488548c1f9d7ebf662",
1814
+ "value": " 2/2 [00:35<00:00, 16.08s/it]"
1815
  }
1816
  },
1817
+ "e6e3c978a1a64d34a8d21561c4b5ef9b": {
1818
  "model_module": "@jupyter-widgets/base",
1819
  "model_name": "LayoutModel",
1820
  "model_module_version": "1.2.0",
 
1866
  "width": null
1867
  }
1868
  },
1869
+ "ec8a5a4a858b464b96b29329180f3673": {
1870
  "model_module": "@jupyter-widgets/base",
1871
  "model_name": "LayoutModel",
1872
  "model_module_version": "1.2.0",
 
1918
  "width": null
1919
  }
1920
  },
1921
+ "bf2eac5e2dc648fa9df98217a0f56184": {
1922
  "model_module": "@jupyter-widgets/controls",
1923
  "model_name": "DescriptionStyleModel",
1924
  "model_module_version": "1.5.0",
 
1933
  "description_width": ""
1934
  }
1935
  },
1936
+ "57c88788ec5e441e8bad7e56be410fb9": {
1937
  "model_module": "@jupyter-widgets/base",
1938
  "model_name": "LayoutModel",
1939
  "model_module_version": "1.2.0",
 
1985
  "width": null
1986
  }
1987
  },
1988
+ "92389a57eff34d0fa9289f72763a4461": {
1989
  "model_module": "@jupyter-widgets/controls",
1990
  "model_name": "ProgressStyleModel",
1991
  "model_module_version": "1.5.0",
 
2001
  "description_width": ""
2002
  }
2003
  },
2004
+ "4727819fea9942a484da549b89734b09": {
2005
  "model_module": "@jupyter-widgets/base",
2006
  "model_name": "LayoutModel",
2007
  "model_module_version": "1.2.0",
 
2053
  "width": null
2054
  }
2055
  },
2056
+ "6ce6eff7389541488548c1f9d7ebf662": {
2057
  "model_module": "@jupyter-widgets/controls",
2058
  "model_name": "DescriptionStyleModel",
2059
  "model_module_version": "1.5.0",
 
2068
  "description_width": ""
2069
  }
2070
  },
2071
+ "db68eded020b4f6796675c4bbda0d543": {
2072
  "model_module": "@jupyter-widgets/controls",
2073
  "model_name": "HBoxModel",
2074
  "model_module_version": "1.5.0",
 
2083
  "_view_name": "HBoxView",
2084
  "box_style": "",
2085
  "children": [
2086
+ "IPY_MODEL_fe5e9c27e24047bf95d027145ff3a73f",
2087
+ "IPY_MODEL_6270ab95922c4fb8b35c3a96493d3204",
2088
+ "IPY_MODEL_2b81342407e14b72a074fb95ec80ac45"
2089
  ],
2090
+ "layout": "IPY_MODEL_f9ac412f13bf4028adda2821efe2a754"
2091
  }
2092
  },
2093
+ "fe5e9c27e24047bf95d027145ff3a73f": {
2094
  "model_module": "@jupyter-widgets/controls",
2095
  "model_name": "HTMLModel",
2096
  "model_module_version": "1.5.0",
 
2105
  "_view_name": "HTMLView",
2106
  "description": "",
2107
  "description_tooltip": null,
2108
+ "layout": "IPY_MODEL_a812381934884cae923ad239f90c5fc8",
2109
  "placeholder": "​",
2110
+ "style": "IPY_MODEL_5a53355d4c1c450fbcc4df52a4fdacf9",
2111
  "value": "generation_config.json: 100%"
2112
  }
2113
  },
2114
+ "6270ab95922c4fb8b35c3a96493d3204": {
2115
  "model_module": "@jupyter-widgets/controls",
2116
  "model_name": "FloatProgressModel",
2117
  "model_module_version": "1.5.0",
 
2127
  "bar_style": "success",
2128
  "description": "",
2129
  "description_tooltip": null,
2130
+ "layout": "IPY_MODEL_2349ab97a5fe43b295485e3054868adc",
2131
  "max": 184,
2132
  "min": 0,
2133
  "orientation": "horizontal",
2134
+ "style": "IPY_MODEL_41673e49e9fc451488875e8842482ad6",
2135
  "value": 184
2136
  }
2137
  },
2138
+ "2b81342407e14b72a074fb95ec80ac45": {
2139
  "model_module": "@jupyter-widgets/controls",
2140
  "model_name": "HTMLModel",
2141
  "model_module_version": "1.5.0",
 
2150
  "_view_name": "HTMLView",
2151
  "description": "",
2152
  "description_tooltip": null,
2153
+ "layout": "IPY_MODEL_c039465e17464bb2bb6b1f561fb8a2e5",
2154
  "placeholder": "​",
2155
+ "style": "IPY_MODEL_8b3a7103e06c461daa6adfb28ff62ef1",
2156
+ "value": " 184/184 [00:00<00:00, 11.8kB/s]"
2157
  }
2158
  },
2159
+ "f9ac412f13bf4028adda2821efe2a754": {
2160
  "model_module": "@jupyter-widgets/base",
2161
  "model_name": "LayoutModel",
2162
  "model_module_version": "1.2.0",
 
2208
  "width": null
2209
  }
2210
  },
2211
+ "a812381934884cae923ad239f90c5fc8": {
2212
  "model_module": "@jupyter-widgets/base",
2213
  "model_name": "LayoutModel",
2214
  "model_module_version": "1.2.0",
 
2260
  "width": null
2261
  }
2262
  },
2263
+ "5a53355d4c1c450fbcc4df52a4fdacf9": {
2264
  "model_module": "@jupyter-widgets/controls",
2265
  "model_name": "DescriptionStyleModel",
2266
  "model_module_version": "1.5.0",
 
2275
  "description_width": ""
2276
  }
2277
  },
2278
+ "2349ab97a5fe43b295485e3054868adc": {
2279
  "model_module": "@jupyter-widgets/base",
2280
  "model_name": "LayoutModel",
2281
  "model_module_version": "1.2.0",
 
2327
  "width": null
2328
  }
2329
  },
2330
+ "41673e49e9fc451488875e8842482ad6": {
2331
  "model_module": "@jupyter-widgets/controls",
2332
  "model_name": "ProgressStyleModel",
2333
  "model_module_version": "1.5.0",
 
2343
  "description_width": ""
2344
  }
2345
  },
2346
+ "c039465e17464bb2bb6b1f561fb8a2e5": {
2347
  "model_module": "@jupyter-widgets/base",
2348
  "model_name": "LayoutModel",
2349
  "model_module_version": "1.2.0",
 
2395
  "width": null
2396
  }
2397
  },
2398
+ "8b3a7103e06c461daa6adfb28ff62ef1": {
2399
  "model_module": "@jupyter-widgets/controls",
2400
  "model_name": "DescriptionStyleModel",
2401
  "model_module_version": "1.5.0",
 
2410
  "description_width": ""
2411
  }
2412
  },
2413
+ "fabcc929877b4aefb270db80dbbdf659": {
2414
  "model_module": "@jupyter-widgets/controls",
2415
  "model_name": "HBoxModel",
2416
  "model_module_version": "1.5.0",
 
2425
  "_view_name": "HBoxView",
2426
  "box_style": "",
2427
  "children": [
2428
+ "IPY_MODEL_4b35a5fb0d664ae98936f35f05d17c94",
2429
+ "IPY_MODEL_14bd936e301546588b920207cc98021c",
2430
+ "IPY_MODEL_0d584ff57acc462d88adedd25cf6fb2d"
2431
  ],
2432
+ "layout": "IPY_MODEL_4cb9dfe7227c4ccfb8a9b21e46c305a6"
2433
  }
2434
  },
2435
+ "4b35a5fb0d664ae98936f35f05d17c94": {
2436
  "model_module": "@jupyter-widgets/controls",
2437
  "model_name": "HTMLModel",
2438
  "model_module_version": "1.5.0",
 
2447
  "_view_name": "HTMLView",
2448
  "description": "",
2449
  "description_tooltip": null,
2450
+ "layout": "IPY_MODEL_0abada86d2534304ab101eb823d198bf",
2451
  "placeholder": "​",
2452
+ "style": "IPY_MODEL_b4a9962b09e84797a2362b8b2de3c0a9",
2453
  "value": "tokenizer_config.json: 100%"
2454
  }
2455
  },
2456
+ "14bd936e301546588b920207cc98021c": {
2457
  "model_module": "@jupyter-widgets/controls",
2458
  "model_name": "FloatProgressModel",
2459
  "model_module_version": "1.5.0",
 
2469
  "bar_style": "success",
2470
  "description": "",
2471
  "description_tooltip": null,
2472
+ "layout": "IPY_MODEL_d9fd1949ac774ea297ba265a4893527c",
2473
  "max": 51080,
2474
  "min": 0,
2475
  "orientation": "horizontal",
2476
+ "style": "IPY_MODEL_d1bdc8898c3b45c5b9b79937b3d007c7",
2477
  "value": 51080
2478
  }
2479
  },
2480
+ "0d584ff57acc462d88adedd25cf6fb2d": {
2481
  "model_module": "@jupyter-widgets/controls",
2482
  "model_name": "HTMLModel",
2483
  "model_module_version": "1.5.0",
 
2492
  "_view_name": "HTMLView",
2493
  "description": "",
2494
  "description_tooltip": null,
2495
+ "layout": "IPY_MODEL_4b04a514cb76437cb32a332a0de09b32",
2496
  "placeholder": "​",
2497
+ "style": "IPY_MODEL_7b3dad782c244a0bb84cea25f56cab57",
2498
+ "value": " 51.1k/51.1k [00:00<00:00, 3.09MB/s]"
2499
  }
2500
  },
2501
+ "4cb9dfe7227c4ccfb8a9b21e46c305a6": {
2502
  "model_module": "@jupyter-widgets/base",
2503
  "model_name": "LayoutModel",
2504
  "model_module_version": "1.2.0",
 
2550
  "width": null
2551
  }
2552
  },
2553
+ "0abada86d2534304ab101eb823d198bf": {
2554
  "model_module": "@jupyter-widgets/base",
2555
  "model_name": "LayoutModel",
2556
  "model_module_version": "1.2.0",
 
2602
  "width": null
2603
  }
2604
  },
2605
+ "b4a9962b09e84797a2362b8b2de3c0a9": {
2606
  "model_module": "@jupyter-widgets/controls",
2607
  "model_name": "DescriptionStyleModel",
2608
  "model_module_version": "1.5.0",
 
2617
  "description_width": ""
2618
  }
2619
  },
2620
+ "d9fd1949ac774ea297ba265a4893527c": {
2621
  "model_module": "@jupyter-widgets/base",
2622
  "model_name": "LayoutModel",
2623
  "model_module_version": "1.2.0",
 
2669
  "width": null
2670
  }
2671
  },
2672
+ "d1bdc8898c3b45c5b9b79937b3d007c7": {
2673
  "model_module": "@jupyter-widgets/controls",
2674
  "model_name": "ProgressStyleModel",
2675
  "model_module_version": "1.5.0",
 
2685
  "description_width": ""
2686
  }
2687
  },
2688
+ "4b04a514cb76437cb32a332a0de09b32": {
2689
  "model_module": "@jupyter-widgets/base",
2690
  "model_name": "LayoutModel",
2691
  "model_module_version": "1.2.0",
 
2737
  "width": null
2738
  }
2739
  },
2740
+ "7b3dad782c244a0bb84cea25f56cab57": {
2741
  "model_module": "@jupyter-widgets/controls",
2742
  "model_name": "DescriptionStyleModel",
2743
  "model_module_version": "1.5.0",
 
2752
  "description_width": ""
2753
  }
2754
  },
2755
+ "67799a0490474da9989ecb130d00bb14": {
2756
  "model_module": "@jupyter-widgets/controls",
2757
  "model_name": "HBoxModel",
2758
  "model_module_version": "1.5.0",
 
2767
  "_view_name": "HBoxView",
2768
  "box_style": "",
2769
  "children": [
2770
+ "IPY_MODEL_20b329c89e5d445d8f9a2bfe1fcbf5b0",
2771
+ "IPY_MODEL_36552b38ef7b4fa09878a7a998b6a962",
2772
+ "IPY_MODEL_e8a6468dd07d4c1b9778e973eb59eae6"
2773
  ],
2774
+ "layout": "IPY_MODEL_0c50f61f2f044298b157a1b9999f5c14"
2775
  }
2776
  },
2777
+ "20b329c89e5d445d8f9a2bfe1fcbf5b0": {
2778
  "model_module": "@jupyter-widgets/controls",
2779
  "model_name": "HTMLModel",
2780
  "model_module_version": "1.5.0",
 
2789
  "_view_name": "HTMLView",
2790
  "description": "",
2791
  "description_tooltip": null,
2792
+ "layout": "IPY_MODEL_3d6c377873064f8884d2542aa8b1ffe8",
2793
  "placeholder": "​",
2794
+ "style": "IPY_MODEL_558fed2f0b8d45e68bbf8db3a83ca842",
2795
  "value": "tokenizer.json: 100%"
2796
  }
2797
  },
2798
+ "36552b38ef7b4fa09878a7a998b6a962": {
2799
  "model_module": "@jupyter-widgets/controls",
2800
  "model_name": "FloatProgressModel",
2801
  "model_module_version": "1.5.0",
 
2811
  "bar_style": "success",
2812
  "description": "",
2813
  "description_tooltip": null,
2814
+ "layout": "IPY_MODEL_c0fbf17fa86b418a80b501cd708fd2bd",
2815
  "max": 17209920,
2816
  "min": 0,
2817
  "orientation": "horizontal",
2818
+ "style": "IPY_MODEL_8398acbc6e9442f4977a950895c1c609",
2819
  "value": 17209920
2820
  }
2821
  },
2822
+ "e8a6468dd07d4c1b9778e973eb59eae6": {
2823
  "model_module": "@jupyter-widgets/controls",
2824
  "model_name": "HTMLModel",
2825
  "model_module_version": "1.5.0",
 
2834
  "_view_name": "HTMLView",
2835
  "description": "",
2836
  "description_tooltip": null,
2837
+ "layout": "IPY_MODEL_aa5f73bf8e1b4e3fa5208fb79d0bccad",
2838
  "placeholder": "​",
2839
+ "style": "IPY_MODEL_e49bfb70c69448e094cfced0670ebdf0",
2840
+ "value": " 17.2M/17.2M [00:00<00:00, 40.3MB/s]"
2841
  }
2842
  },
2843
+ "0c50f61f2f044298b157a1b9999f5c14": {
2844
  "model_module": "@jupyter-widgets/base",
2845
  "model_name": "LayoutModel",
2846
  "model_module_version": "1.2.0",
 
2892
  "width": null
2893
  }
2894
  },
2895
+ "3d6c377873064f8884d2542aa8b1ffe8": {
2896
  "model_module": "@jupyter-widgets/base",
2897
  "model_name": "LayoutModel",
2898
  "model_module_version": "1.2.0",
 
2944
  "width": null
2945
  }
2946
  },
2947
+ "558fed2f0b8d45e68bbf8db3a83ca842": {
2948
  "model_module": "@jupyter-widgets/controls",
2949
  "model_name": "DescriptionStyleModel",
2950
  "model_module_version": "1.5.0",
 
2959
  "description_width": ""
2960
  }
2961
  },
2962
+ "c0fbf17fa86b418a80b501cd708fd2bd": {
2963
  "model_module": "@jupyter-widgets/base",
2964
  "model_name": "LayoutModel",
2965
  "model_module_version": "1.2.0",
 
3011
  "width": null
3012
  }
3013
  },
3014
+ "8398acbc6e9442f4977a950895c1c609": {
3015
  "model_module": "@jupyter-widgets/controls",
3016
  "model_name": "ProgressStyleModel",
3017
  "model_module_version": "1.5.0",
 
3027
  "description_width": ""
3028
  }
3029
  },
3030
+ "aa5f73bf8e1b4e3fa5208fb79d0bccad": {
3031
  "model_module": "@jupyter-widgets/base",
3032
  "model_name": "LayoutModel",
3033
  "model_module_version": "1.2.0",
 
3079
  "width": null
3080
  }
3081
  },
3082
+ "e49bfb70c69448e094cfced0670ebdf0": {
3083
  "model_module": "@jupyter-widgets/controls",
3084
  "model_name": "DescriptionStyleModel",
3085
  "model_module_version": "1.5.0",
 
3094
  "description_width": ""
3095
  }
3096
  },
3097
+ "fe69698774914703b8965881b02295d2": {
3098
  "model_module": "@jupyter-widgets/controls",
3099
  "model_name": "HBoxModel",
3100
  "model_module_version": "1.5.0",
 
3109
  "_view_name": "HBoxView",
3110
  "box_style": "",
3111
  "children": [
3112
+ "IPY_MODEL_10c8a182ade749e692d7963315af9035",
3113
+ "IPY_MODEL_0ea057b814e94d2b99c93c103fc50d2f",
3114
+ "IPY_MODEL_a7808d66b1fd4a5e965a5ce749613369"
3115
  ],
3116
+ "layout": "IPY_MODEL_6214dd64a1b042a38076cfc47d296819"
3117
  }
3118
  },
3119
+ "10c8a182ade749e692d7963315af9035": {
3120
  "model_module": "@jupyter-widgets/controls",
3121
  "model_name": "HTMLModel",
3122
  "model_module_version": "1.5.0",
 
3131
  "_view_name": "HTMLView",
3132
  "description": "",
3133
  "description_tooltip": null,
3134
+ "layout": "IPY_MODEL_0b6e7691f4d044ca928b59c006c2c9ab",
3135
  "placeholder": "​",
3136
+ "style": "IPY_MODEL_a77e8a6c300643c4aed7dd324df8ba20",
3137
  "value": "special_tokens_map.json: 100%"
3138
  }
3139
  },
3140
+ "0ea057b814e94d2b99c93c103fc50d2f": {
3141
  "model_module": "@jupyter-widgets/controls",
3142
  "model_name": "FloatProgressModel",
3143
  "model_module_version": "1.5.0",
 
3153
  "bar_style": "success",
3154
  "description": "",
3155
  "description_tooltip": null,
3156
+ "layout": "IPY_MODEL_146ff58fee1d4e918719c7941bdb567e",
3157
  "max": 454,
3158
  "min": 0,
3159
  "orientation": "horizontal",
3160
+ "style": "IPY_MODEL_a08dabc71f974f19a4c224df6e0983c2",
3161
  "value": 454
3162
  }
3163
  },
3164
+ "a7808d66b1fd4a5e965a5ce749613369": {
3165
  "model_module": "@jupyter-widgets/controls",
3166
  "model_name": "HTMLModel",
3167
  "model_module_version": "1.5.0",
 
3176
  "_view_name": "HTMLView",
3177
  "description": "",
3178
  "description_tooltip": null,
3179
+ "layout": "IPY_MODEL_f9cb2dee1c8a4e05af2f96fafedb76c6",
3180
  "placeholder": "​",
3181
+ "style": "IPY_MODEL_67b68753389741cf866e318d59b155df",
3182
+ "value": " 454/454 [00:00<00:00, 35.1kB/s]"
3183
  }
3184
  },
3185
+ "6214dd64a1b042a38076cfc47d296819": {
3186
  "model_module": "@jupyter-widgets/base",
3187
  "model_name": "LayoutModel",
3188
  "model_module_version": "1.2.0",
 
3234
  "width": null
3235
  }
3236
  },
3237
+ "0b6e7691f4d044ca928b59c006c2c9ab": {
3238
  "model_module": "@jupyter-widgets/base",
3239
  "model_name": "LayoutModel",
3240
  "model_module_version": "1.2.0",
 
3286
  "width": null
3287
  }
3288
  },
3289
+ "a77e8a6c300643c4aed7dd324df8ba20": {
3290
  "model_module": "@jupyter-widgets/controls",
3291
  "model_name": "DescriptionStyleModel",
3292
  "model_module_version": "1.5.0",
 
3301
  "description_width": ""
3302
  }
3303
  },
3304
+ "146ff58fee1d4e918719c7941bdb567e": {
3305
  "model_module": "@jupyter-widgets/base",
3306
  "model_name": "LayoutModel",
3307
  "model_module_version": "1.2.0",
 
3353
  "width": null
3354
  }
3355
  },
3356
+ "a08dabc71f974f19a4c224df6e0983c2": {
3357
  "model_module": "@jupyter-widgets/controls",
3358
  "model_name": "ProgressStyleModel",
3359
  "model_module_version": "1.5.0",
 
3369
  "description_width": ""
3370
  }
3371
  },
3372
+ "f9cb2dee1c8a4e05af2f96fafedb76c6": {
3373
  "model_module": "@jupyter-widgets/base",
3374
  "model_name": "LayoutModel",
3375
  "model_module_version": "1.2.0",
 
3421
  "width": null
3422
  }
3423
  },
3424
+ "67b68753389741cf866e318d59b155df": {
3425
  "model_module": "@jupyter-widgets/controls",
3426
  "model_name": "DescriptionStyleModel",
3427
  "model_module_version": "1.5.0",
 
3469
  "cell_type": "code",
3470
  "source": [
3471
  "class ChatBot:\n",
3472
+ " _instance = None\n",
3473
+ " _current_model = None\n",
3474
+ "\n",
3475
+ " def __init__(self, model_slug=None):\n",
3476
+ " if model_slug and model_slug != ChatBot._current_model:\n",
3477
+ " self.load_model(model_slug)\n",
3478
+ " ChatBot._current_model = model_slug\n",
3479
+ "\n",
3480
+ " self.messages = []\n",
3481
+ " self.max_tokens = 2048\n",
3482
+ " self.temperature = 0.01\n",
3483
+ " self.top_k = 100\n",
3484
+ " self.top_p = 0.95\n",
3485
+ "\n",
3486
+ " @classmethod\n",
3487
+ " def get_instance(cls, model_slug=None):\n",
3488
+ " if not cls._instance or (model_slug and model_slug != cls._current_model):\n",
3489
+ " cls._instance = cls(model_slug)\n",
3490
+ " return cls._instance\n",
3491
+ "\n",
3492
+ " def load_model(self, model_slug):\n",
3493
  " print(f\"Loading model {model_slug}...\")\n",
3494
  " self.pipeline = pipeline(\n",
3495
  " \"text-generation\",\n",
3496
  " model=model_slug,\n",
3497
  " device_map=\"auto\",\n",
3498
  " )\n",
 
 
3499
  " clear_output()\n",
3500
  " print(\"Model loaded successfully!\")\n",
3501
  "\n",
3502
+ " def reset_conversation(self, system_message):\n",
3503
+ " \"\"\"Reset the conversation with a new system message\"\"\"\n",
3504
+ " self.messages = [{\"role\": \"system\", \"content\": system_message}]\n",
3505
+ "\n",
3506
  " def get_response(self, user_input):\n",
3507
+ " \"\"\"Get response with current parameters\"\"\"\n",
3508
  " self.messages.append({\"role\": \"user\", \"content\": user_input})\n",
3509
  " outputs = self.pipeline(\n",
3510
  " self.messages,\n",
3511
  " max_new_tokens=self.max_tokens,\n",
3512
  " do_sample=True,\n",
3513
+ " temperature=self.temperature,\n",
3514
+ " top_k=self.top_k,\n",
3515
+ " top_p=self.top_p\n",
3516
  " )\n",
3517
  " response = outputs[0][\"generated_text\"][-1]\n",
 
3518
  " content = response.get('content', 'No content available')\n",
3519
  " self.messages.append({\"role\": \"assistant\", \"content\": content})\n",
3520
+ " return content\n",
3521
+ "\n",
3522
+ " def update_params(self, max_tokens=None, temperature=None, top_k=None, top_p=None):\n",
3523
+ " \"\"\"Update generation parameters\"\"\"\n",
3524
+ " if max_tokens is not None:\n",
3525
+ " self.max_tokens = max_tokens\n",
3526
+ " if temperature is not None:\n",
3527
+ " self.temperature = temperature\n",
3528
+ " if top_k is not None:\n",
3529
+ " self.top_k = top_k\n",
3530
+ " if top_p is not None:\n",
3531
+ " self.top_p = top_p"
3532
  ],
3533
  "metadata": {
3534
  "id": "v4uIN6uIeyl3"
 
3539
  {
3540
  "cell_type": "code",
3541
  "source": [
3542
+ "def run_chatbot(\n",
3543
+ " model=None,\n",
3544
+ " system_message=\"You are Orca Mini, You are expert in python coding, Think step by step before coming up with final answer\",\n",
3545
+ " max_tokens=None,\n",
3546
+ " temperature=None,\n",
3547
+ " top_k=None,\n",
3548
+ " top_p=None,\n",
3549
+ "):\n",
3550
  " try:\n",
3551
+ " # Get or create chatbot instance\n",
3552
+ " chatbot = ChatBot.get_instance(model)\n",
3553
+ "\n",
3554
+ " # Update parameters if provided\n",
3555
+ " chatbot.update_params(max_tokens, temperature, top_k, top_p)\n",
3556
+ "\n",
3557
+ " # Reset conversation with new system message\n",
3558
+ " chatbot.reset_conversation(system_message)\n",
3559
+ "\n",
3560
  " print(\"Chatbot: Hi! Type 'quit' to exit.\")\n",
3561
  "\n",
3562
  " while True:\n",
 
3569
  " except Exception as e:\n",
3570
  " print(f\"Chatbot: An error occurred: {str(e)}\")\n",
3571
  " print(\"Please try again.\")\n",
3572
+ "\n",
3573
  " except Exception as e:\n",
3574
+ " print(f\"Error in chatbot: {str(e)}\")"
3575
  ],
3576
  "metadata": {
3577
  "id": "H2n_6Xcue3Vn"
 
3582
  {
3583
  "cell_type": "code",
3584
  "source": [
3585
+ "run_chatbot(model=\"pankajmathur/orca_mini_v9_5_3B-Instruct\")"
 
 
 
 
 
 
 
 
3586
  ],
3587
  "metadata": {
3588
  "colab": {
3589
  "base_uri": "https://localhost:8080/",
3590
+ "height": 1000,
3591
  "referenced_widgets": [
3592
+ "637f41ae2ab14c06943a5ec2ce8c4242",
3593
+ "7e5eec1572604af08834025f46f2d8f3",
3594
+ "149308c908fb46a8a1e028996e174ec5",
3595
+ "26cc90124bc542bcb101eb4682f65159",
3596
+ "ff9be360146a4d07be6fa2ffe3c8fe1d",
3597
+ "93a47770ec514e218fa7477af0671671",
3598
+ "a724fce5d23e4756a3c34bbf9f4f6a06",
3599
+ "bd8ce53127c54f82a0282c25c45941c3",
3600
+ "09e687a3660e429ab54fd662af0cad67",
3601
+ "93f53e66cd764eedbcaef25933540820",
3602
+ "ab04d29b53d5454197b6afb81456a7af",
3603
+ "604f93fbbca04199a04458ac645af230",
3604
+ "7e6cb3cd05524ac2860f4272113e6139",
3605
+ "03b47f01d0e54c1793097e261a099b21",
3606
+ "e92d60d05744419da2a7065035c6f292",
3607
+ "ab601e55b56d4ea3b6c755ca4a497606",
3608
+ "77263d2b6959427b91ffb19d260a2865",
3609
+ "1b932349856c48b09e8780f433ea8828",
3610
+ "a0a5689e2f534fa5a07ca9130ac25bca",
3611
+ "0a95b43354c5409f947e4bebfb6303c4",
3612
+ "e66d6a5b09314e038594e9d5c8c1d37a",
3613
+ "8f26b2720259475d870c9463e3b66036",
3614
+ "d0b05eb0ca5940a2a919644606492913",
3615
+ "6725133cc67b419c8c46c9be3ab732b4",
3616
+ "defbdb2da412468d96f037f18f41208f",
3617
+ "462f587404ef4844b9fe20dfe2fc180e",
3618
+ "a9343873ea5743579839d0c160e3b6e5",
3619
+ "4167e6137e954d26932fa06200bd9776",
3620
+ "5ab07d142b664b4f831f9154796f8223",
3621
+ "412217338ab94e66be46a2db94bc50d2",
3622
+ "561a5a6d05d849989c21e8cd866ef0d0",
3623
+ "049eda868c854f8cb9ad229b3daf07b4",
3624
+ "84d38e8a604542c7b5ae11222dbe0736",
3625
+ "934127ff77ad40e5a8b4a6bf49e1c99a",
3626
+ "97b70100dbd94fec845b4a5957d80275",
3627
+ "07820ad0a128448fb68cb9933e587c36",
3628
+ "cf53697ff88241b581268b5a2968ab5d",
3629
+ "a72880ed0a3a47859ad3de21117b3bb7",
3630
+ "ad08221fce8f4a098f481eb52a7da715",
3631
+ "eb36602b1de9450198a8211c3e61801e",
3632
+ "7046c073168047718dd43658538f8311",
3633
+ "327100e640964301b471bdbf44a8cc92",
3634
+ "9e23ae17098949a4be5d47cabd7197e6",
3635
+ "4966b5a8be4d456aacf728c531d37799",
3636
+ "0efac0e8c0d148d0979e654189341bf1",
3637
+ "8913e7df99fb44cdb05d3a76b3cdccce",
3638
+ "3f54f55d312d4c7c9e5a83f55eda18cf",
3639
+ "0c4a040d86cd43e3b4771b6df80cad6a",
3640
+ "088cf400027343158e9e985437252437",
3641
+ "a431e4bb083a4fcb95623fc1d78d572d",
3642
+ "af18ee5bf6594b4f96782165a11b4343",
3643
+ "a4a7fcbac66e43a88740bd4952e73096",
3644
+ "834248ac782e4aa7991c87e84e08726a",
3645
+ "e4fec6c8ae6c4c4491bac27bdb2aba75",
3646
+ "dfd88327d2954b5093b55ab98a99e467",
3647
+ "35dab978ecb4465cbe8d99a4005c3eca",
3648
+ "932cd09a51fb4fa1842ac2ba38e7a996",
3649
+ "a2a7bbba58dd4119872ee694eec7b869",
3650
+ "dd8696a9341a467f853b882c997e7454",
3651
+ "e6e3c978a1a64d34a8d21561c4b5ef9b",
3652
+ "ec8a5a4a858b464b96b29329180f3673",
3653
+ "bf2eac5e2dc648fa9df98217a0f56184",
3654
+ "57c88788ec5e441e8bad7e56be410fb9",
3655
+ "92389a57eff34d0fa9289f72763a4461",
3656
+ "4727819fea9942a484da549b89734b09",
3657
+ "6ce6eff7389541488548c1f9d7ebf662",
3658
+ "db68eded020b4f6796675c4bbda0d543",
3659
+ "fe5e9c27e24047bf95d027145ff3a73f",
3660
+ "6270ab95922c4fb8b35c3a96493d3204",
3661
+ "2b81342407e14b72a074fb95ec80ac45",
3662
+ "f9ac412f13bf4028adda2821efe2a754",
3663
+ "a812381934884cae923ad239f90c5fc8",
3664
+ "5a53355d4c1c450fbcc4df52a4fdacf9",
3665
+ "2349ab97a5fe43b295485e3054868adc",
3666
+ "41673e49e9fc451488875e8842482ad6",
3667
+ "c039465e17464bb2bb6b1f561fb8a2e5",
3668
+ "8b3a7103e06c461daa6adfb28ff62ef1",
3669
+ "fabcc929877b4aefb270db80dbbdf659",
3670
+ "4b35a5fb0d664ae98936f35f05d17c94",
3671
+ "14bd936e301546588b920207cc98021c",
3672
+ "0d584ff57acc462d88adedd25cf6fb2d",
3673
+ "4cb9dfe7227c4ccfb8a9b21e46c305a6",
3674
+ "0abada86d2534304ab101eb823d198bf",
3675
+ "b4a9962b09e84797a2362b8b2de3c0a9",
3676
+ "d9fd1949ac774ea297ba265a4893527c",
3677
+ "d1bdc8898c3b45c5b9b79937b3d007c7",
3678
+ "4b04a514cb76437cb32a332a0de09b32",
3679
+ "7b3dad782c244a0bb84cea25f56cab57",
3680
+ "67799a0490474da9989ecb130d00bb14",
3681
+ "20b329c89e5d445d8f9a2bfe1fcbf5b0",
3682
+ "36552b38ef7b4fa09878a7a998b6a962",
3683
+ "e8a6468dd07d4c1b9778e973eb59eae6",
3684
+ "0c50f61f2f044298b157a1b9999f5c14",
3685
+ "3d6c377873064f8884d2542aa8b1ffe8",
3686
+ "558fed2f0b8d45e68bbf8db3a83ca842",
3687
+ "c0fbf17fa86b418a80b501cd708fd2bd",
3688
+ "8398acbc6e9442f4977a950895c1c609",
3689
+ "aa5f73bf8e1b4e3fa5208fb79d0bccad",
3690
+ "e49bfb70c69448e094cfced0670ebdf0",
3691
+ "fe69698774914703b8965881b02295d2",
3692
+ "10c8a182ade749e692d7963315af9035",
3693
+ "0ea057b814e94d2b99c93c103fc50d2f",
3694
+ "a7808d66b1fd4a5e965a5ce749613369",
3695
+ "6214dd64a1b042a38076cfc47d296819",
3696
+ "0b6e7691f4d044ca928b59c006c2c9ab",
3697
+ "a77e8a6c300643c4aed7dd324df8ba20",
3698
+ "146ff58fee1d4e918719c7941bdb567e",
3699
+ "a08dabc71f974f19a4c224df6e0983c2",
3700
+ "f9cb2dee1c8a4e05af2f96fafedb76c6",
3701
+ "67b68753389741cf866e318d59b155df"
3702
  ]
3703
  },
3704
  "id": "JEqgoAH2fC6h",
3705
+ "outputId": "04f56adc-beee-4caf-9e6b-222600bf6cb2"
3706
  },
3707
+ "execution_count": 5,
3708
  "outputs": [
3709
  {
3710
  "output_type": "stream",
 
3712
  "text": [
3713
  "Model loaded successfully!\n",
3714
  "Chatbot: Hi! Type 'quit' to exit.\n",
3715
+ "You: You are given an array nums. A split of an array nums is beautiful if: The array nums is split into three subarrays : nums1, nums2, and nums3, such that nums can be formed by concatenating nums1, nums2, and nums3 in that order. The subarray nums1 is a prefix of nums2 OR nums2 is a prefix of nums3. Return the number of ways you can make this split. Example 1: Input: nums = [1,1,2,1] Output: 2 Explanation: The beautiful splits are: A split with nums1 = [1], nums2 = [1,2], nums3 = [1]. A split with nums1 = [1], nums2 = [1], nums3 = [2,1]. Example 2: Input: nums = [1,2,3,4] Output: 0 Explanation: There are 0 beautiful splits. Constraints: 1 <= nums.length <= 5000 0 <= nums[i] <= 50\n",
3716
+ "Chatbot: To solve this problem, we can use a two-pointer approach. We will iterate through the array and keep track of the number of elements in the first and second subarrays. We will also keep track of the number of ways we can make a beautiful split.\n",
3717
  "\n",
3718
+ "Here is the Python code for the solution:\n",
3719
  "\n",
3720
+ "```python\n",
3721
+ "def numberOfBeautifulSplit(nums):\n",
3722
+ " n = len(nums)\n",
3723
+ " ways = 0\n",
3724
+ " i = 0\n",
3725
+ " while i < n:\n",
3726
+ " j = i + 1\n",
3727
+ " while j < n and nums[j] == nums[i]:\n",
3728
+ " j += 1\n",
3729
+ " ways += j - i - 1\n",
3730
+ " i = j\n",
3731
+ " return ways\n",
3732
+ "```\n",
3733
  "\n",
3734
+ "In this code, we start by initializing the `ways` variable to 0. We then use two pointers, `i` and `j`, to iterate through the array. The `i` pointer is used to keep track of the start of the current subarray, and the `j` pointer is used to keep track of the end of the current subarray.\n",
3735
  "\n",
3736
+ "We then enter a while loop that continues until we have processed all elements in the array. Inside the loop, we use another while loop to find the end of the current subarray. This inner loop continues until we find a different element or we reach the end of the array.\n",
3737
  "\n",
3738
+ "Once we have found the end of the current subarray, we add the number of elements in the subarray to the `ways` variable. This is because we can make a beautiful split by concatenating the current subarray with the remaining elements in the array.\n",
3739
  "\n",
3740
+ "Finally, we increment the `i` pointer to move to the next subarray and repeat the process until we have processed all elements in the array. At the end of the loop, we return the `ways` variable, which represents the number of ways we can make a beautiful split.\n",
3741
+ "You: You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list. You may assume the two numbers do not contain any leading zero, except the number 0 itself. Example 1: Input: l1 = [2,4,3], l2 = [5,6,4] Output: [7,0,8] Explanation: 342 + 465 = 807. Example 2: Input: l1 = [0], l2 = [0] Output: [0] Example 3: Input: l1 = [9,9,9,9,9,9,9], l2 = [9,9,9,9] Output: [8,9,9,9,0,0,0,1] Constraints: The number of nodes in each linked list is in the range [1, 100]. 0 <= Node.val <= 9 It is guaranteed that the list represents a number that does not have leading zeros.\n",
3742
+ "Chatbot: To solve this problem, we can use a two-pointer approach. We will iterate through both linked lists simultaneously and add the corresponding nodes. If the sum of the nodes is greater than or equal to 10, we will carry the extra digit to the next iteration. We will also keep track of the carry and the result.\n",
3743
  "\n",
3744
+ "Here is the Python code for the solution:\n",
3745
  "\n",
3746
+ "```python\n",
3747
+ "# Definition for singly-linked list.\n",
3748
+ "class ListNode:\n",
3749
+ " def __init__(self, val=0):\n",
3750
+ " self.val = val\n",
3751
+ " self.next = None\n",
3752
  "\n",
3753
+ "class Solution:\n",
3754
+ " def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode:\n",
3755
+ " dummy = ListNode(0)\n",
3756
+ " current = dummy\n",
3757
+ " carry = 0\n",
3758
+ " while l1 or l2 or carry:\n",
3759
+ " x = l1.val if l1 else 0\n",
3760
+ " y = l2.val if l2 else 0\n",
3761
+ " sum = carry + x + y\n",
3762
+ " carry = sum // 10\n",
3763
+ " current.next = ListNode(sum % 10)\n",
3764
+ " current = current.next\n",
3765
+ " if l1: l1 = l1.next\n",
3766
+ " if l2: l2 = l2.next\n",
3767
+ " return dummy.next\n",
3768
+ "```\n",
3769
  "\n",
3770
+ "In this code, we start by initializing a dummy node and a current pointer to the dummy node. We also initialize a carry variable to keep track of the carry from the previous iteration.\n",
3771
  "\n",
3772
+ "We then enter a while loop that continues until we have processed all nodes in both linked lists and there is no carry left. Inside the loop, we get the values of the current nodes in both linked lists. If a node does not exist, we assume its value is 0.\n",
3773
+ "\n",
3774
+ "We calculate the sum of the current nodes and the carry. We then calculate the new carry and the value of the new node. We create a new node with the value of the new node and add it to the current list.\n",
3775
+ "\n",
3776
+ "Finally, we move the current pointer to the next node and repeat the process until we have processed all nodes in both linked lists. At the end of the loop, we return the next node of the dummy node, which is the head of the resulting linked list.\n"
3777
+ ]
3778
+ },
3779
+ {
3780
+ "output_type": "error",
3781
+ "ename": "KeyboardInterrupt",
3782
+ "evalue": "Interrupted by user",
3783
+ "traceback": [
3784
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
3785
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
3786
+ "\u001b[0;32m<ipython-input-5-f98a243feda9>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mrun_chatbot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"pankajmathur/orca_mini_v9_5_3B-Instruct\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
3787
+ "\u001b[0;32m<ipython-input-4-bd2f6edce037>\u001b[0m in \u001b[0;36mrun_chatbot\u001b[0;34m(model, system_message, max_tokens, temperature, top_k, top_p)\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0muser_input\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"You: \"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0muser_input\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlower\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'quit'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0;32mbreak\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
3788
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36mraw_input\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m 849\u001b[0m \u001b[0;34m\"raw_input was called, but this frontend does not support input requests.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 850\u001b[0m )\n\u001b[0;32m--> 851\u001b[0;31m return self._input_request(str(prompt),\n\u001b[0m\u001b[1;32m 852\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_ident\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 853\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_header\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
3789
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36m_input_request\u001b[0;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m \u001b[0;31m# re-raise KeyboardInterrupt, to truncate traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 895\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Interrupted by user\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Invalid Message:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
3790
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: Interrupted by user"
3791
  ]
3792
  }
3793
  ]
3794
  },
3795
  {
3796
  "cell_type": "code",
3797
+ "source": [
3798
+ "# # change system message\n",
3799
+ "# run_chatbot(\n",
3800
+ "# system_message=\"You are Orca Mini, You are expert in logic, Think step by step before coming up with final answer\",\n",
3801
+ "# max_tokens=1024,\n",
3802
+ "# temperature=0.3\n",
3803
+ "# )"
3804
+ ],
3805
  "metadata": {
3806
  "id": "tGW8wsfAfHDf"
3807
  },