--- language: - en tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:101762 - loss:TripletLoss base_model: google-bert/bert-base-uncased widget: - source_sentence: Why am I still afraid of the dark? sentences: - What one single change can change a life? - Why do we have a dark side? - Why are humans afraid of the dark? - source_sentence: How did you feel when you had sex for the first time? sentences: - What do you mean by hypocrite? - What is the feeling to have sexual intercourse at the first time? - What does receiving anal sex for the first time feel like? - source_sentence: How much sleep do we really need as an adult in a night? sentences: - What does histrionic personality disorder feel like physically to you? - How much hours should we sleep daily? - How do you sleep 7 hours a day? - source_sentence: How can I learn English from the beginning? sentences: - Why am I learning English? - How do you post a question on Quora? - How do I learn English? - source_sentence: How can I open my computer if I forget my password? sentences: - What's my state Id number? - I forgot my security code on my Nokia 206 how can I unlock it? - I forget my PC password what should I do to open it? datasets: - embedding-data/QQP_triplets pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy model-index: - name: SentenceTransformer based on google-bert/bert-base-uncased results: - task: type: triplet name: Triplet dataset: name: sentest type: sentest metrics: - type: cosine_accuracy value: 0.9882572889328003 name: Cosine Accuracy --- # SentenceTransformer based on google-bert/bert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [qqp_triplets](https://huggingface.co/datasets/embedding-data/QQP_triplets) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [qqp_triplets](https://huggingface.co/datasets/embedding-data/QQP_triplets) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("palusi/sentest") # Run inference sentences = [ 'How can I open my computer if I forget my password?', 'I forget my PC password what should I do to open it?', 'I forgot my security code on my Nokia 206 how can I unlock it?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `sentest` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.9883** | ## Training Details ### Training Dataset #### qqp_triplets * Dataset: [qqp_triplets](https://huggingface.co/datasets/embedding-data/QQP_triplets) at [f475d9c](https://huggingface.co/datasets/embedding-data/QQP_triplets/tree/f475d9ca10f6eae1f39e756d14610ce7c5bb515c) * Size: 101,762 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------|:-------------------------------------------------------|:--------------------------------------------------------------| | Who are Mona Punjabi? | Who are Mona punjabis? | Why are Punjabis so proud of their Punjabi-hood? | | What are some of the best books on/by Bill Gates? | What are the best books of Bill Gates? | Are there any films about Bill Gates? | | Where can I get best pasta in Bangalore? | Where can I get best pasta in Bangalore ? | Where can I get best street food in Bangalore? | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Evaluation Dataset #### qqp_triplets * Dataset: [qqp_triplets](https://huggingface.co/datasets/embedding-data/QQP_triplets) at [f475d9c](https://huggingface.co/datasets/embedding-data/QQP_triplets/tree/f475d9ca10f6eae1f39e756d14610ce7c5bb515c) * Size: 101,762 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-----------------------------------------------------------|:-------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------| | How do l study efficiently? | How do you study effectively? | Why can't I study efficiently? | | How do you commit suicide? | What is the easiest way to commite suicide? | What is a way to commit suicide and not damaging your organs so that they can be donated? | | How do you learn to speak a foreign language? | What is the quickest way a person can learn to speak a new language fluently? | What's the easiest foreign language for a native English speaker, living in America, to learn to speak? | * Loss: [TripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `push_to_hub`: True - `hub_model_id`: palusi/sentest - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: palusi/sentest - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | sentest_cosine_accuracy | |:----------:|:--------:|:-------------:|:---------------:|:-----------------------:| | -1 | -1 | - | - | 0.8806 | | 0.0983 | 500 | 2.5691 | - | - | | 0.1965 | 1000 | 1.2284 | 0.6712 | 0.9645 | | 0.2948 | 1500 | 0.8769 | - | - | | 0.3930 | 2000 | 0.7151 | 0.4490 | 0.9787 | | 0.4913 | 2500 | 0.6506 | - | - | | 0.5895 | 3000 | 0.5855 | 0.3519 | 0.9848 | | 0.6878 | 3500 | 0.5397 | - | - | | 0.7860 | 4000 | 0.4998 | 0.3079 | 0.9871 | | 0.8843 | 4500 | 0.4885 | - | - | | **0.9825** | **5000** | **0.483** | **0.288** | **0.9883** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.48.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```