palusi commited on
Commit
a24e8ee
·
verified ·
1 Parent(s): 6adc832

End of training

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:101762
10
+ - loss:TripletLoss
11
+ base_model: google-bert/bert-base-uncased
12
+ widget:
13
+ - source_sentence: Why am I still afraid of the dark?
14
+ sentences:
15
+ - What one single change can change a life?
16
+ - Why do we have a dark side?
17
+ - Why are humans afraid of the dark?
18
+ - source_sentence: How did you feel when you had sex for the first time?
19
+ sentences:
20
+ - What do you mean by hypocrite?
21
+ - What is the feeling to have sexual intercourse at the first time?
22
+ - What does receiving anal sex for the first time feel like?
23
+ - source_sentence: How much sleep do we really need as an adult in a night?
24
+ sentences:
25
+ - What does histrionic personality disorder feel like physically to you?
26
+ - How much hours should we sleep daily?
27
+ - How do you sleep 7 hours a day?
28
+ - source_sentence: How can I learn English from the beginning?
29
+ sentences:
30
+ - Why am I learning English?
31
+ - How do you post a question on Quora?
32
+ - How do I learn English?
33
+ - source_sentence: How can I open my computer if I forget my password?
34
+ sentences:
35
+ - What's my state Id number?
36
+ - I forgot my security code on my Nokia 206 how can I unlock it?
37
+ - I forget my PC password what should I do to open it?
38
+ datasets:
39
+ - embedding-data/QQP_triplets
40
+ pipeline_tag: sentence-similarity
41
+ library_name: sentence-transformers
42
+ metrics:
43
+ - cosine_accuracy
44
+ model-index:
45
+ - name: SentenceTransformer based on google-bert/bert-base-uncased
46
+ results:
47
+ - task:
48
+ type: triplet
49
+ name: Triplet
50
+ dataset:
51
+ name: sentest
52
+ type: sentest
53
+ metrics:
54
+ - type: cosine_accuracy
55
+ value: 0.9882572889328003
56
+ name: Cosine Accuracy
57
+ ---
58
+
59
+ # SentenceTransformer based on google-bert/bert-base-uncased
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [qqp_triplets](https://huggingface.co/datasets/embedding-data/QQP_triplets) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
68
+ - **Maximum Sequence Length:** 512 tokens
69
+ - **Output Dimensionality:** 768 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ - **Training Dataset:**
72
+ - [qqp_triplets](https://huggingface.co/datasets/embedding-data/QQP_triplets)
73
+ - **Language:** en
74
+ <!-- - **License:** Unknown -->
75
+
76
+ ### Model Sources
77
+
78
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
79
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
80
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
81
+
82
+ ### Full Model Architecture
83
+
84
+ ```
85
+ SentenceTransformer(
86
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
87
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
88
+ )
89
+ ```
90
+
91
+ ## Usage
92
+
93
+ ### Direct Usage (Sentence Transformers)
94
+
95
+ First install the Sentence Transformers library:
96
+
97
+ ```bash
98
+ pip install -U sentence-transformers
99
+ ```
100
+
101
+ Then you can load this model and run inference.
102
+ ```python
103
+ from sentence_transformers import SentenceTransformer
104
+
105
+ # Download from the 🤗 Hub
106
+ model = SentenceTransformer("palusi/sentest")
107
+ # Run inference
108
+ sentences = [
109
+ 'How can I open my computer if I forget my password?',
110
+ 'I forget my PC password what should I do to open it?',
111
+ 'I forgot my security code on my Nokia 206 how can I unlock it?',
112
+ ]
113
+ embeddings = model.encode(sentences)
114
+ print(embeddings.shape)
115
+ # [3, 768]
116
+
117
+ # Get the similarity scores for the embeddings
118
+ similarities = model.similarity(embeddings, embeddings)
119
+ print(similarities.shape)
120
+ # [3, 3]
121
+ ```
122
+
123
+ <!--
124
+ ### Direct Usage (Transformers)
125
+
126
+ <details><summary>Click to see the direct usage in Transformers</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Downstream Usage (Sentence Transformers)
133
+
134
+ You can finetune this model on your own dataset.
135
+
136
+ <details><summary>Click to expand</summary>
137
+
138
+ </details>
139
+ -->
140
+
141
+ <!--
142
+ ### Out-of-Scope Use
143
+
144
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
145
+ -->
146
+
147
+ ## Evaluation
148
+
149
+ ### Metrics
150
+
151
+ #### Triplet
152
+
153
+ * Dataset: `sentest`
154
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
155
+
156
+ | Metric | Value |
157
+ |:--------------------|:-----------|
158
+ | **cosine_accuracy** | **0.9883** |
159
+
160
+ <!--
161
+ ## Bias, Risks and Limitations
162
+
163
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
164
+ -->
165
+
166
+ <!--
167
+ ### Recommendations
168
+
169
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
170
+ -->
171
+
172
+ ## Training Details
173
+
174
+ ### Training Dataset
175
+
176
+ #### qqp_triplets
177
+
178
+ * Dataset: [qqp_triplets](https://huggingface.co/datasets/embedding-data/QQP_triplets) at [f475d9c](https://huggingface.co/datasets/embedding-data/QQP_triplets/tree/f475d9ca10f6eae1f39e756d14610ce7c5bb515c)
179
+ * Size: 101,762 training samples
180
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
181
+ * Approximate statistics based on the first 1000 samples:
182
+ | | anchor | positive | negative |
183
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
184
+ | type | string | string | string |
185
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.96 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.99 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.49 tokens</li><li>max: 73 tokens</li></ul> |
186
+ * Samples:
187
+ | anchor | positive | negative |
188
+ |:---------------------------------------------------------------|:-------------------------------------------------------|:--------------------------------------------------------------|
189
+ | <code>Who are Mona Punjabi?</code> | <code>Who are Mona punjabis?</code> | <code>Why are Punjabis so proud of their Punjabi-hood?</code> |
190
+ | <code>What are some of the best books on/by Bill Gates?</code> | <code>What are the best books of Bill Gates?</code> | <code>Are there any films about Bill Gates?</code> |
191
+ | <code>Where can I get best pasta in Bangalore?</code> | <code>Where can I get best pasta in Bangalore ?</code> | <code>Where can I get best street food in Bangalore?</code> |
192
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
193
+ ```json
194
+ {
195
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
196
+ "triplet_margin": 5
197
+ }
198
+ ```
199
+
200
+ ### Evaluation Dataset
201
+
202
+ #### qqp_triplets
203
+
204
+ * Dataset: [qqp_triplets](https://huggingface.co/datasets/embedding-data/QQP_triplets) at [f475d9c](https://huggingface.co/datasets/embedding-data/QQP_triplets/tree/f475d9ca10f6eae1f39e756d14610ce7c5bb515c)
205
+ * Size: 101,762 evaluation samples
206
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
207
+ * Approximate statistics based on the first 1000 samples:
208
+ | | anchor | positive | negative |
209
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
210
+ | type | string | string | string |
211
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.99 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.76 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.75 tokens</li><li>max: 78 tokens</li></ul> |
212
+ * Samples:
213
+ | anchor | positive | negative |
214
+ |:-----------------------------------------------------------|:-------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|
215
+ | <code>How do l study efficiently?</code> | <code>How do you study effectively?</code> | <code>Why can't I study efficiently?</code> |
216
+ | <code>How do you commit suicide?</code> | <code>What is the easiest way to commite suicide?</code> | <code>What is a way to commit suicide and not damaging your organs so that they can be donated?</code> |
217
+ | <code>How do you learn to speak a foreign language?</code> | <code>What is the quickest way a person can learn to speak a new language fluently?</code> | <code>What's the easiest foreign language for a native English speaker, living in America, to learn to speak?</code> |
218
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
219
+ ```json
220
+ {
221
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
222
+ "triplet_margin": 5
223
+ }
224
+ ```
225
+
226
+ ### Training Hyperparameters
227
+ #### Non-Default Hyperparameters
228
+
229
+ - `eval_strategy`: steps
230
+ - `per_device_train_batch_size`: 16
231
+ - `per_device_eval_batch_size`: 16
232
+ - `learning_rate`: 2e-05
233
+ - `weight_decay`: 0.01
234
+ - `num_train_epochs`: 1
235
+ - `warmup_ratio`: 0.1
236
+ - `fp16`: True
237
+ - `load_best_model_at_end`: True
238
+ - `push_to_hub`: True
239
+ - `hub_model_id`: palusi/sentest
240
+ - `batch_sampler`: no_duplicates
241
+
242
+ #### All Hyperparameters
243
+ <details><summary>Click to expand</summary>
244
+
245
+ - `overwrite_output_dir`: False
246
+ - `do_predict`: False
247
+ - `eval_strategy`: steps
248
+ - `prediction_loss_only`: True
249
+ - `per_device_train_batch_size`: 16
250
+ - `per_device_eval_batch_size`: 16
251
+ - `per_gpu_train_batch_size`: None
252
+ - `per_gpu_eval_batch_size`: None
253
+ - `gradient_accumulation_steps`: 1
254
+ - `eval_accumulation_steps`: None
255
+ - `torch_empty_cache_steps`: None
256
+ - `learning_rate`: 2e-05
257
+ - `weight_decay`: 0.01
258
+ - `adam_beta1`: 0.9
259
+ - `adam_beta2`: 0.999
260
+ - `adam_epsilon`: 1e-08
261
+ - `max_grad_norm`: 1.0
262
+ - `num_train_epochs`: 1
263
+ - `max_steps`: -1
264
+ - `lr_scheduler_type`: linear
265
+ - `lr_scheduler_kwargs`: {}
266
+ - `warmup_ratio`: 0.1
267
+ - `warmup_steps`: 0
268
+ - `log_level`: passive
269
+ - `log_level_replica`: warning
270
+ - `log_on_each_node`: True
271
+ - `logging_nan_inf_filter`: True
272
+ - `save_safetensors`: True
273
+ - `save_on_each_node`: False
274
+ - `save_only_model`: False
275
+ - `restore_callback_states_from_checkpoint`: False
276
+ - `no_cuda`: False
277
+ - `use_cpu`: False
278
+ - `use_mps_device`: False
279
+ - `seed`: 42
280
+ - `data_seed`: None
281
+ - `jit_mode_eval`: False
282
+ - `use_ipex`: False
283
+ - `bf16`: False
284
+ - `fp16`: True
285
+ - `fp16_opt_level`: O1
286
+ - `half_precision_backend`: auto
287
+ - `bf16_full_eval`: False
288
+ - `fp16_full_eval`: False
289
+ - `tf32`: None
290
+ - `local_rank`: 0
291
+ - `ddp_backend`: None
292
+ - `tpu_num_cores`: None
293
+ - `tpu_metrics_debug`: False
294
+ - `debug`: []
295
+ - `dataloader_drop_last`: False
296
+ - `dataloader_num_workers`: 0
297
+ - `dataloader_prefetch_factor`: None
298
+ - `past_index`: -1
299
+ - `disable_tqdm`: False
300
+ - `remove_unused_columns`: True
301
+ - `label_names`: None
302
+ - `load_best_model_at_end`: True
303
+ - `ignore_data_skip`: False
304
+ - `fsdp`: []
305
+ - `fsdp_min_num_params`: 0
306
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
307
+ - `fsdp_transformer_layer_cls_to_wrap`: None
308
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
309
+ - `deepspeed`: None
310
+ - `label_smoothing_factor`: 0.0
311
+ - `optim`: adamw_torch
312
+ - `optim_args`: None
313
+ - `adafactor`: False
314
+ - `group_by_length`: False
315
+ - `length_column_name`: length
316
+ - `ddp_find_unused_parameters`: None
317
+ - `ddp_bucket_cap_mb`: None
318
+ - `ddp_broadcast_buffers`: False
319
+ - `dataloader_pin_memory`: True
320
+ - `dataloader_persistent_workers`: False
321
+ - `skip_memory_metrics`: True
322
+ - `use_legacy_prediction_loop`: False
323
+ - `push_to_hub`: True
324
+ - `resume_from_checkpoint`: None
325
+ - `hub_model_id`: palusi/sentest
326
+ - `hub_strategy`: every_save
327
+ - `hub_private_repo`: None
328
+ - `hub_always_push`: False
329
+ - `gradient_checkpointing`: False
330
+ - `gradient_checkpointing_kwargs`: None
331
+ - `include_inputs_for_metrics`: False
332
+ - `include_for_metrics`: []
333
+ - `eval_do_concat_batches`: True
334
+ - `fp16_backend`: auto
335
+ - `push_to_hub_model_id`: None
336
+ - `push_to_hub_organization`: None
337
+ - `mp_parameters`:
338
+ - `auto_find_batch_size`: False
339
+ - `full_determinism`: False
340
+ - `torchdynamo`: None
341
+ - `ray_scope`: last
342
+ - `ddp_timeout`: 1800
343
+ - `torch_compile`: False
344
+ - `torch_compile_backend`: None
345
+ - `torch_compile_mode`: None
346
+ - `dispatch_batches`: None
347
+ - `split_batches`: None
348
+ - `include_tokens_per_second`: False
349
+ - `include_num_input_tokens_seen`: False
350
+ - `neftune_noise_alpha`: None
351
+ - `optim_target_modules`: None
352
+ - `batch_eval_metrics`: False
353
+ - `eval_on_start`: False
354
+ - `use_liger_kernel`: False
355
+ - `eval_use_gather_object`: False
356
+ - `average_tokens_across_devices`: False
357
+ - `prompts`: None
358
+ - `batch_sampler`: no_duplicates
359
+ - `multi_dataset_batch_sampler`: proportional
360
+
361
+ </details>
362
+
363
+ ### Training Logs
364
+ | Epoch | Step | Training Loss | Validation Loss | sentest_cosine_accuracy |
365
+ |:----------:|:--------:|:-------------:|:---------------:|:-----------------------:|
366
+ | -1 | -1 | - | - | 0.8806 |
367
+ | 0.0983 | 500 | 2.5691 | - | - |
368
+ | 0.1965 | 1000 | 1.2284 | 0.6712 | 0.9645 |
369
+ | 0.2948 | 1500 | 0.8769 | - | - |
370
+ | 0.3930 | 2000 | 0.7151 | 0.4490 | 0.9787 |
371
+ | 0.4913 | 2500 | 0.6506 | - | - |
372
+ | 0.5895 | 3000 | 0.5855 | 0.3519 | 0.9848 |
373
+ | 0.6878 | 3500 | 0.5397 | - | - |
374
+ | 0.7860 | 4000 | 0.4998 | 0.3079 | 0.9871 |
375
+ | 0.8843 | 4500 | 0.4885 | - | - |
376
+ | **0.9825** | **5000** | **0.483** | **0.288** | **0.9883** |
377
+
378
+ * The bold row denotes the saved checkpoint.
379
+
380
+ ### Framework Versions
381
+ - Python: 3.11.11
382
+ - Sentence Transformers: 3.4.1
383
+ - Transformers: 4.48.2
384
+ - PyTorch: 2.5.1+cu124
385
+ - Accelerate: 1.3.0
386
+ - Datasets: 3.2.0
387
+ - Tokenizers: 0.21.0
388
+
389
+ ## Citation
390
+
391
+ ### BibTeX
392
+
393
+ #### Sentence Transformers
394
+ ```bibtex
395
+ @inproceedings{reimers-2019-sentence-bert,
396
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
397
+ author = "Reimers, Nils and Gurevych, Iryna",
398
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
399
+ month = "11",
400
+ year = "2019",
401
+ publisher = "Association for Computational Linguistics",
402
+ url = "https://arxiv.org/abs/1908.10084",
403
+ }
404
+ ```
405
+
406
+ #### TripletLoss
407
+ ```bibtex
408
+ @misc{hermans2017defense,
409
+ title={In Defense of the Triplet Loss for Person Re-Identification},
410
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
411
+ year={2017},
412
+ eprint={1703.07737},
413
+ archivePrefix={arXiv},
414
+ primaryClass={cs.CV}
415
+ }
416
+ ```
417
+
418
+ <!--
419
+ ## Glossary
420
+
421
+ *Clearly define terms in order to be accessible across audiences.*
422
+ -->
423
+
424
+ <!--
425
+ ## Model Card Authors
426
+
427
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
428
+ -->
429
+
430
+ <!--
431
+ ## Model Card Contact
432
+
433
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
434
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd2bb8646382e3e5adce7ce9689b7589bd5df3aa4fb5825e52a042db2eabe7c3
3
  size 437951328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67849e79d7ad662228898368642395895355d267d7d647a4d277d1571d124ed6
3
  size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }