Update README.md
Browse files
README.md
CHANGED
@@ -2,79 +2,97 @@
|
|
2 |
license: apache-2.0
|
3 |
base_model: google/mt5-large
|
4 |
tags:
|
|
|
|
|
|
|
|
|
|
|
5 |
- generated_from_keras_callback
|
6 |
model-index:
|
7 |
-
- name: pakawadeep/
|
8 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
|
17 |
-
It achieves the following results on the evaluation set:
|
18 |
-
- Train Loss: 0.2041
|
19 |
-
- Validation Loss: 0.7119
|
20 |
-
- Train Rouge1: 8.6634
|
21 |
-
- Train Rouge2: 0.6931
|
22 |
-
- Train Rougel: 8.5691
|
23 |
-
- Train Rougelsum: 8.6987
|
24 |
-
- Train Gen Len: 11.9158
|
25 |
-
- Epoch: 21
|
26 |
|
27 |
## Model description
|
28 |
|
29 |
-
|
|
|
|
|
30 |
|
31 |
## Intended uses & limitations
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
## Training and evaluation data
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
## Training procedure
|
40 |
|
41 |
### Training hyperparameters
|
42 |
-
|
43 |
-
|
44 |
-
-
|
45 |
-
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|
50 |
-
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
|
51 |
-
| 3.7859 | 1.7737 | 3.8966 | 1.1818 | 3.8139 | 3.8868 | 12.8069 | 0 |
|
52 |
-
| 1.7728 | 1.2922 | 6.8010 | 1.1881 | 6.7657 | 6.7657 | 11.7376 | 1 |
|
53 |
-
| 1.3356 | 1.0734 | 7.3020 | 1.8152 | 7.1782 | 7.3020 | 11.9010 | 2 |
|
54 |
-
| 1.1070 | 0.9405 | 8.2037 | 2.1782 | 7.9915 | 8.2037 | 12.0198 | 3 |
|
55 |
-
| 0.9583 | 0.8494 | 8.2037 | 2.1782 | 7.9915 | 8.2037 | 11.9901 | 4 |
|
56 |
-
| 0.8463 | 0.7866 | 9.0288 | 2.4257 | 8.8873 | 8.9109 | 11.9802 | 5 |
|
57 |
-
| 0.7662 | 0.7320 | 8.9816 | 2.3762 | 8.7694 | 8.8755 | 11.8960 | 6 |
|
58 |
-
| 0.6961 | 0.7024 | 8.7341 | 1.8812 | 8.6457 | 8.6987 | 11.9010 | 7 |
|
59 |
-
| 0.6444 | 0.6952 | 8.7341 | 1.8812 | 8.6457 | 8.6987 | 11.9406 | 8 |
|
60 |
-
| 0.5881 | 0.6612 | 8.2862 | 0.7921 | 8.2390 | 8.2744 | 11.8960 | 9 |
|
61 |
-
| 0.5386 | 0.6746 | 8.4689 | 1.3861 | 8.4335 | 8.4512 | 11.9307 | 10 |
|
62 |
-
| 0.4944 | 0.6473 | 8.4689 | 1.3861 | 8.4335 | 8.4512 | 11.9406 | 11 |
|
63 |
-
| 0.4524 | 0.6328 | 7.7793 | 0.7921 | 7.7027 | 7.7558 | 11.9307 | 12 |
|
64 |
-
| 0.4161 | 0.6521 | 8.4689 | 1.3861 | 8.4335 | 8.4512 | 11.9307 | 13 |
|
65 |
-
| 0.3812 | 0.6311 | 8.2862 | 0.7921 | 8.2390 | 8.2744 | 11.9109 | 14 |
|
66 |
-
| 0.3488 | 0.6368 | 8.2862 | 0.7921 | 8.2390 | 8.2744 | 11.8960 | 15 |
|
67 |
-
| 0.3181 | 0.6449 | 8.7812 | 0.7921 | 8.6987 | 8.7930 | 11.9455 | 16 |
|
68 |
-
| 0.2898 | 0.6495 | 8.8461 | 0.8911 | 8.7400 | 8.8637 | 11.9307 | 17 |
|
69 |
-
| 0.2677 | 0.6583 | 8.8461 | 0.8911 | 8.7400 | 8.8637 | 11.9059 | 18 |
|
70 |
-
| 0.2435 | 0.6823 | 8.8461 | 0.8911 | 8.7400 | 8.8637 | 11.9653 | 19 |
|
71 |
-
| 0.2227 | 0.6897 | 8.6575 | 0.6931 | 8.5337 | 8.6693 | 11.9703 | 20 |
|
72 |
-
| 0.2041 | 0.7119 | 8.6634 | 0.6931 | 8.5691 | 8.6987 | 11.9158 | 21 |
|
73 |
-
|
74 |
|
75 |
### Framework versions
|
76 |
-
|
77 |
- Transformers 4.41.2
|
78 |
- TensorFlow 2.15.0
|
79 |
- Datasets 2.20.0
|
80 |
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: google/mt5-large
|
4 |
tags:
|
5 |
+
- thai
|
6 |
+
- grammatical-error-correction
|
7 |
+
- mt5
|
8 |
+
- fine-tuned
|
9 |
+
- l2-learners
|
10 |
- generated_from_keras_callback
|
11 |
model-index:
|
12 |
+
- name: pakawadeep/ctfl-gec-th
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Grammatical Error Correction
|
16 |
+
type: text2text-generation
|
17 |
+
dataset:
|
18 |
+
name: CTFL-GEC (augmented with Self-Instruct 200%)
|
19 |
+
type: custom
|
20 |
+
metrics:
|
21 |
+
- name: Precision
|
22 |
+
type: precision
|
23 |
+
value: 0.47
|
24 |
+
- name: Recall
|
25 |
+
type: recall
|
26 |
+
value: 0.47
|
27 |
+
- name: F1
|
28 |
+
type: f1
|
29 |
+
value: 0.47
|
30 |
+
- name: F0.5
|
31 |
+
type: f0.5
|
32 |
+
value: 0.47
|
33 |
+
- name: BLEU
|
34 |
+
type: bleu
|
35 |
+
value: 0.69
|
36 |
+
- name: GLEU
|
37 |
+
type: gleu
|
38 |
+
value: 0.68
|
39 |
+
- name: CHRF
|
40 |
+
type: chrf
|
41 |
+
value: 0.87
|
42 |
+
language:
|
43 |
+
- th
|
44 |
---
|
45 |
|
46 |
+
# pakawadeep/ctfl-gec-th
|
|
|
47 |
|
48 |
+
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large), trained for **Grammatical Error Correction (GEC)** in **Thai** for **L2 learners**. It was developed as part of the research *"Grammatical Error Correction for L2 Learners of Thai Using Large Language Models"*, and represents the best-performing model in the study.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
## Model description
|
51 |
|
52 |
+
This model is based on the mT5-large architecture and was fine-tuned on the CTFL-GEC dataset, which contains human-annotated grammatical error corrections from L2 Thai learners. To improve generalization, the dataset was augmented using the Self-Instruct method with 200% additional synthetic pairs.
|
53 |
+
|
54 |
+
The model is capable of correcting sentence-level grammatical errors typical of L2 Thai writing, including issues with word order, omissions, and incorrect particles.
|
55 |
|
56 |
## Intended uses & limitations
|
57 |
|
58 |
+
### Intended uses
|
59 |
+
- Grammatical error correction for Thai language learners
|
60 |
+
- Linguistic analysis of L2 learner errors
|
61 |
+
- Research in low-resource GEC methods
|
62 |
+
|
63 |
+
### Limitations
|
64 |
+
- May not generalize to informal or dialectal Thai
|
65 |
+
- Performance may degrade on sentence types or domains not represented in the training data
|
66 |
+
- Designed for Thai GEC only; not optimized for multilingual correction tasks
|
67 |
|
68 |
## Training and evaluation data
|
69 |
|
70 |
+
The model was fine-tuned on a combined dataset consisting of:
|
71 |
+
- **CTFL-GEC**: A manually annotated corpus of Thai learner writing (370 writing samples, 4,200+ sentences)
|
72 |
+
- **Self-Instruct augmentation (200%)**: Synthetic GEC pairs generated using LLM prompting
|
73 |
+
|
74 |
+
Evaluation was conducted on a held-out portion of the human-annotated dataset using common GEC metrics.
|
75 |
|
76 |
## Training procedure
|
77 |
|
78 |
### Training hyperparameters
|
79 |
+
- **Optimizer**: AdamWeightDecay
|
80 |
+
- **Learning rate**: 2e-5
|
81 |
+
- **Beta1/Beta2**: 0.9 / 0.999
|
82 |
+
- **Epsilon**: 1e-7
|
83 |
+
- **Weight decay**: 0.01
|
84 |
+
- **Precision**: float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
### Framework versions
|
|
|
87 |
- Transformers 4.41.2
|
88 |
- TensorFlow 2.15.0
|
89 |
- Datasets 2.20.0
|
90 |
- Tokenizers 0.19.1
|
91 |
+
|
92 |
+
## Citation
|
93 |
+
|
94 |
+
If you use this model, please cite the associated thesis:
|
95 |
+
|
96 |
+
```
|
97 |
+
Pakawadee P. Chookwan, "Grammatical Error Correction for L2 Learners of Thai Using Large Language Models", 2025.
|
98 |
+
```
|