osman93 commited on
Commit
b68f1b5
·
verified ·
1 Parent(s): 9db50fa

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 251.84 +/- 15.08
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 292.93 +/- 16.18
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8190e3e5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8190e3e670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8190e3e700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8190e3e790>", "_build": "<function ActorCriticPolicy._build at 0x7f8190e3e820>", "forward": "<function ActorCriticPolicy.forward at 0x7f8190e3e8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8190e3e940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8190e3e9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8190e3ea60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8190e3eaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8190e3eb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8190e34de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670593317669500047, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPbqjxxWJo9TazUvfRNkb7MMpa9PUZ4PQAAAAAAAAAAZmSGPBNKWD+/oyS9Rf6kviTO4zuVl/k8AAAAAAAAAABz14S9/CFPPUb2Ij5fVBm+Iic6PXxQOT0AAAAAAAAAAADNLj3DIUe6BJe9OZIC57XXsbE784bVtAAAgD8AAIA/M7pmvRRwkbpvJD06L/gjNTZkG7oGOVu5AACAPwAAgD8zQq48SDupuqqJhjuXHx42Red0uoUvmroAAIA/AACAPwDnIL3D3UW6QvteuZcgiDWb9YM73pODOAAAgD8AAIA/AC5OPFxzdLpfS6E6INmrNtZyfTo437m5AACAPwAAgD9Nkho9w+ECulSnk7uG6eI3xLM2uTHcRzoAAIA/AACAPwB5irxS4PC5/22dOQSdgjQxCxQ6zdi4uAAAgD8AAIA/MzCcvFxrdrrtoOY6bXzeNa9vPzuJ+wa6AACAPwAAgD9mvFa8w3lGurwzjTsQgJq2lK2Yu3Ooo7oAAIA/AACAP2a+rbyPnmi6EDilu3f0hTeFfzq5DNeMOgAAgD8AAIA/Mw0YPfukRj/4UOW9zklLvqpGfryO9wK8AAAAAAAAAABNfkE9j45+ujidgro1YW21dkuJuiJRmDkAAIA/AACAP5obybwG8bk/PJg/vksKBTzniUK8BpCvvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8bp+we7sYECUhpRSlIwBbJRN6AOMAXSUR0CW3vilzltCdX2UKGgGaAloD0MIu2BwzR0RXECUhpRSlGgVTegDaBZHQJbiQAsCkoF1fZQoaAZoCWgPQwgOnglNEmNjQJSGlFKUaBVN6ANoFkdAlucWTot+TnV9lChoBmgJaA9DCOG3IcZra1xAlIaUUpRoFU3oA2gWR0CW53okAxSHdX2UKGgGaAloD0MIeGFrtvKBZECUhpRSlGgVTegDaBZHQJbqRkoWpId1fZQoaAZoCWgPQwidnQyOEh5kQJSGlFKUaBVN6ANoFkdAlu1fpdKNAHV9lChoBmgJaA9DCHPxtz1BakRAlIaUUpRoFUvBaBZHQJbyNqtYB/91fZQoaAZoCWgPQwjsZ7EUyVVvQJSGlFKUaBVN6wFoFkdAlvKi6lLvkXV9lChoBmgJaA9DCCidSDDVEWZAlIaUUpRoFU3oA2gWR0CW87cmShaldX2UKGgGaAloD0MItahPcofUZUCUhpRSlGgVTegDaBZHQJb0/iIcinp1fZQoaAZoCWgPQwi+S6lLxjNOQJSGlFKUaBVL32gWR0CW+dwrlNlAdX2UKGgGaAloD0MIhlj9EYYjQ0CUhpRSlGgVS+BoFkdAlxJgd4mkWXV9lChoBmgJaA9DCLyQDg9h3AnAlIaUUpRoFUv/aBZHQJcTt2zOX3R1fZQoaAZoCWgPQwiRR3Aj5f5lQJSGlFKUaBVN6ANoFkdAlxQaiCaqj3V9lChoBmgJaA9DCGb2eYxy12BAlIaUUpRoFU3oA2gWR0CXFj4Glhw3dX2UKGgGaAloD0MIb7ckB2y2YkCUhpRSlGgVTegDaBZHQJcYRjXnQpp1fZQoaAZoCWgPQwiQoPgx5mdkQJSGlFKUaBVN6ANoFkdAlxnhl+Vkc3V9lChoBmgJaA9DCIpYxLDDbDtAlIaUUpRoFU0QAWgWR0CXIb7OE/SqdX2UKGgGaAloD0MIBDdStkjCTECUhpRSlGgVS8RoFkdAlyISsOoYN3V9lChoBmgJaA9DCAFPWrisWmBAlIaUUpRoFU3oA2gWR0CXJVPcSGrTdX2UKGgGaAloD0MIP1dbsT8QZUCUhpRSlGgVTegDaBZHQJcmZGrjo6l1fZQoaAZoCWgPQwhLkBFQYexkQJSGlFKUaBVN6ANoFkdAlygtAHE/B3V9lChoBmgJaA9DCGAfnbryGl5AlIaUUpRoFU3oA2gWR0CXKKvjfek6dX2UKGgGaAloD0MIO8eA7HVDYkCUhpRSlGgVTegDaBZHQJcrrVTaTOh1fZQoaAZoCWgPQwg0+PvFbF1MQJSGlFKUaBVL0WgWR0CXMCxlQMx5dX2UKGgGaAloD0MImKQyxZwiYUCUhpRSlGgVTegDaBZHQJcwbgJkXk51fZQoaAZoCWgPQwiAKJgxBfZnQJSGlFKUaBVN6ANoFkdAlzL6HwgDBHV9lChoBmgJaA9DCBnG3SBa12RAlIaUUpRoFU3oA2gWR0CXPF49X9zfdX2UKGgGaAloD0MIdCUC1T8xZkCUhpRSlGgVTegDaBZHQJc912FFlTZ1fZQoaAZoCWgPQwh3TUhrDHoRwJSGlFKUaBVL+WgWR0CXPk+yJKradX2UKGgGaAloD0MIh8H8FTJ8Y0CUhpRSlGgVTegDaBZHQJdC+KdhAnl1fZQoaAZoCWgPQwgKoBhZMoJfQJSGlFKUaBVN6ANoFkdAl1rK6e5Fw3V9lChoBmgJaA9DCPbP04BBgWdAlIaUUpRoFU3oA2gWR0CXXAA9FF2FdX2UKGgGaAloD0MIBvNXyFypYkCUhpRSlGgVTegDaBZHQJdeYIVuaWp1fZQoaAZoCWgPQwgSonxBC/1kQJSGlFKUaBVN6ANoFkdAl2IsJlar3nV9lChoBmgJaA9DCJS/e0cNpmVAlIaUUpRoFU3oA2gWR0CXar7cfvF4dX2UKGgGaAloD0MIGjVfJR8eZkCUhpRSlGgVTegDaBZHQJdrF4zJp351fZQoaAZoCWgPQwj3P8BaNVFlQJSGlFKUaBVN6ANoFkdAl29xL9MsYnV9lChoBmgJaA9DCKD/Hrx2yGFAlIaUUpRoFU3oA2gWR0CXcVMpw0fpdX2UKGgGaAloD0MIvcXDe458YkCUhpRSlGgVTegDaBZHQJdx2m8/Uvx1fZQoaAZoCWgPQwgc0qjAydRnQJSGlFKUaBVN6ANoFkdAl3TXu7YkFHV9lChoBmgJaA9DCBvV6UDWeGNAlIaUUpRoFU3oA2gWR0CXeYXVbzK+dX2UKGgGaAloD0MIyHn/H6c8cECUhpRSlGgVTSoDaBZHQJd6siX6ZYx1fZQoaAZoCWgPQwhStd0EX0ZoQJSGlFKUaBVN6ANoFkdAl3wByKekHnV9lChoBmgJaA9DCCl3n+OjVmNAlIaUUpRoFU3oA2gWR0CXhtbVBlcydX2UKGgGaAloD0MIxVVl3xVxXkCUhpRSlGgVTegDaBZHQJeHX1AZ88d1fZQoaAZoCWgPQwgC2IAI8a1nQJSGlFKUaBVN6ANoFkdAl44wLNOdoXV9lChoBmgJaA9DCI/GoX4XemRAlIaUUpRoFU3oA2gWR0CXsOgZjx0/dX2UKGgGaAloD0MIm+JxUS2wY0CUhpRSlGgVTegDaBZHQJeyRE0BOpN1fZQoaAZoCWgPQwi8yW/RST5kQJSGlFKUaBVN6ANoFkdAl7UqC6H0snV9lChoBmgJaA9DCI3Qz9TrEWFAlIaUUpRoFU3oA2gWR0CXubAmzBykdX2UKGgGaAloD0MI6SgHswnAPUCUhpRSlGgVS/BoFkdAl79keIVM23V9lChoBmgJaA9DCBpvK702Al9AlIaUUpRoFU3oA2gWR0CXw4FMZgogdX2UKGgGaAloD0MIZAPpYlOhYUCUhpRSlGgVTegDaBZHQJfD6Hi3ocJ1fZQoaAZoCWgPQwjlR/yKNZtjQJSGlFKUaBVN6ANoFkdAl8kEjopx3nV9lChoBmgJaA9DCCxEh8CRWGBAlIaUUpRoFU3oA2gWR0CXyurj5sTGdX2UKGgGaAloD0MIEvbtJKKwZECUhpRSlGgVTegDaBZHQJfLctK7I1d1fZQoaAZoCWgPQwgtzEI7p31jQJSGlFKUaBVN6ANoFkdAl87GUGFBY3V9lChoBmgJaA9DCJEpH4Kq711AlIaUUpRoFU3oA2gWR0CX1KzijtXxdX2UKGgGaAloD0MIVdl3RfAPZECUhpRSlGgVTegDaBZHQJfWAs189fV1fZQoaAZoCWgPQwhOmDCaFcdiQJSGlFKUaBVN6ANoFkdAl9diN83Mp3V9lChoBmgJaA9DCGpQNA/gLWRAlIaUUpRoFU3oA2gWR0CX4zoYekpJdX2UKGgGaAloD0MI0v9yLdp2YECUhpRSlGgVTegDaBZHQJfjyWLP2PF1fZQoaAZoCWgPQwhGmKJcmrRjQJSGlFKUaBVN6ANoFkdAl+l+3hGYr3V9lChoBmgJaA9DCIApAwe05V5AlIaUUpRoFU3oA2gWR0CYBanjhky2dX2UKGgGaAloD0MIhQmjWVmKZUCUhpRSlGgVTegDaBZHQJgJJgOSW7h1fZQoaAZoCWgPQwitwJDVLdxnQJSGlFKUaBVN6ANoFkdAmA4mxdIGyHV9lChoBmgJaA9DCCaPp+UHbmVAlIaUUpRoFU3oA2gWR0CYFELHMlkZdX2UKGgGaAloD0MIXvOqzmr3X0CUhpRSlGgVTegDaBZHQJgYP4sVclh1fZQoaAZoCWgPQwhPIy2Vt6RlQJSGlFKUaBVN6ANoFkdAmBifaHsTnXV9lChoBmgJaA9DCI/f2/Rn/mBAlIaUUpRoFU3oA2gWR0CYHXHG0eEJdX2UKGgGaAloD0MIj2yumudTZECUhpRSlGgVTegDaBZHQJgfZMN+b3J1fZQoaAZoCWgPQwhM4NbdPMJkQJSGlFKUaBVN6ANoFkdAmB/zbBXS0HV9lChoBmgJaA9DCFPqknGMmGNAlIaUUpRoFU3oA2gWR0CYI2LThHbzdX2UKGgGaAloD0MICks8oOwHY0CUhpRSlGgVTegDaBZHQJgoj3oLXtl1fZQoaAZoCWgPQwgttHOaBfdjQJSGlFKUaBVN6ANoFkdAmCnYV2zOX3V9lChoBmgJaA9DCLB1qRF6IGZAlIaUUpRoFU3oA2gWR0CYK1XHR1HOdX2UKGgGaAloD0MIFw6EZAGT4r+UhpRSlGgVTSIBaBZHQJgv3YL9deJ1fZQoaAZoCWgPQwhCeoocIlxkQJSGlFKUaBVN6ANoFkdAmDacHbAUL3V9lChoBmgJaA9DCHjvqDGhIGVAlIaUUpRoFU3oA2gWR0CYNxrs0HhTdX2UKGgGaAloD0MIDtyBOmVWYUCUhpRSlGgVTegDaBZHQJg8b9BKL891fZQoaAZoCWgPQwirdeJyvFJlQJSGlFKUaBVN6ANoFkdAmFfHEyckMXV9lChoBmgJaA9DCPtYwW/DH2VAlIaUUpRoFU3oA2gWR0CYWv9ycTakdX2UKGgGaAloD0MIJuMYyZ6BZkCUhpRSlGgVTegDaBZHQJhgBEZzgdh1fZQoaAZoCWgPQwi1wYnoV3BgQJSGlFKUaBVN6ANoFkdAmGcR28qWknV9lChoBmgJaA9DCLWkoxzMoGNAlIaUUpRoFU3oA2gWR0CYa+3Ux20RdX2UKGgGaAloD0MIF7g81oyBXECUhpRSlGgVTegDaBZHQJhsWUUwi7l1fZQoaAZoCWgPQwiGV5I81wxlQJSGlFKUaBVN6ANoFkdAmHGt8Rcu8XV9lChoBmgJaA9DCAdBR6taoF9AlIaUUpRoFU3oA2gWR0CYdMSHuZ1FdX2UKGgGaAloD0MIwvaTMb5kY0CUhpRSlGgVTegDaBZHQJh40MPSUkh1fZQoaAZoCWgPQwg7/DVZI2BjQJSGlFKUaBVN6ANoFkdAmH5lAqur63V9lChoBmgJaA9DCAyVfy2vBGNAlIaUUpRoFU3oA2gWR0CYf8pGFzuGdX2UKGgGaAloD0MItksbDsvTZkCUhpRSlGgVTegDaBZHQJiBe8Gs3hp1fZQoaAZoCWgPQwjqIoWy8FNOQJSGlFKUaBVNAgFoFkdAmIJmVeKKpHV9lChoBmgJaA9DCH2VfOwutF5AlIaUUpRoFU3oA2gWR0CYhh1zySV4dX2UKGgGaAloD0MIUtMuphlAZECUhpRSlGgVTegDaBZHQJiMg1wYLst1fZQoaAZoCWgPQwgP0H05M21hQJSGlFKUaBVN6ANoFkdAmI0EUbkwOHV9lChoBmgJaA9DCJ+RCI1gn2JAlIaUUpRoFU3oA2gWR0CYkc6HCXQddX2UKGgGaAloD0MI2ZPA5hwwMUCUhpRSlGgVTRYBaBZHQJiS0AwPAfx1fZQoaAZoCWgPQwj1vBsLCrdfQJSGlFKUaBVN6ANoFkdAmJjqrNnoPnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bdf422304c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bdf42230550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bdf422305e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bdf42230670>", "_build": "<function ActorCriticPolicy._build at 0x7bdf42230700>", "forward": "<function ActorCriticPolicy.forward at 0x7bdf42230790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bdf42230820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bdf422308b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bdf42230940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bdf422309d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bdf42230a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bdf42230af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bdf42b548c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10010624, "_total_timesteps": 10000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712343365825427160, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3T4D3ORN4+kEl2vuMeHL9QVF0+aKpivgAAAAAAAAAAmvnOu/JJLD7SSZ49akcFv3enkbyeAXY9AAAAAAAAAADNx0c9sHOrP5kTIz4Wf/e+Txs8PAtSLD0AAAAAAAAAANoltL1SaP+5+XUIO7zqKjThPS27UnwgugAAAAAAAIA/AFV8vY4ClD+duDG+lZdEv4B5ib3Qut+9AAAAAAAAAADau7M9qdA+vPQPN76GZyC+DTP0POjIYj8AAIA/AACAP2bwSz7e9Ek/Gn6OO5rRJL/APcs+QkJ5vQAAAAAAAAAATW8bvRRuiroN+du6IvojtiiXDzv1UP05AACAPwAAgD+Aixy9XDMMvFwuCj4uQx09AQRjvTOU/z0AAIA/AACAP03qAb2ueaC6xebMO4aP8zcFh6463qmMNgAAAAAAAIA/s3sUPQQwBT5WAoK+GxOzvuB4nL1qHne+AAAAAAAAAACaKcQ6Z0OcP1v+nzvMXiy/SwjduvP5jroAAAAAAAAAAAA7sbysfao/zuKCvu82CL+ZHai8YkHNvQAAAAAAAAAAAHxsvVybWLqI7nw5vDEVsn9aDjlSPJK4AAAAAAAAgD+zDD8+AbWNP4ZEQz4eMCG/CFTAPn1NVz0AAAAAAAAAALOXej1lrbU/zN87P5OgPb0XZUS8QE3NPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN7UFjd56eMAWyUS82MAXSUR0C7SYEXtShrdX2UKGgGR0Bywao5xR2saAdLx2gIR0C7SYXGS6lMdX2UKGgGR0BxxvK8tf5UaAdLsWgIR0C7SaNL+PzWdX2UKGgGR0BxRjalDWsjaAdLsmgIR0C7SagZ4wAVdX2UKGgGR0BwKjnV5KODaAdLpGgIR0C7Sao0/GEPdX2UKGgGR0Bw3wM/hVENaAdLoGgIR0C7ScoqTbFkdX2UKGgGR0BwuBswco6TaAdLumgIR0C7SdNalk6LdX2UKGgGR0Bzo8wUQCjlaAdLxmgIR0C7Tqtr0rbydX2UKGgGR0BwzpjmSyMUaAdLsGgIR0C7Tqtt/FzddX2UKGgGR0BynM8mrsByaAdLmmgIR0C7Trkq2BrfdX2UKGgGR0BxcyQ/5ckdaAdLx2gIR0C7TufjXFtLdX2UKGgGR0BxyKwdKdxyaAdLvWgIR0C7Tu05p8F7dX2UKGgGR0BvSt0Lc9GJaAdLnmgIR0C7TvYGUwBYdX2UKGgGR0Bxulfx+a0AaAdLtGgIR0C7Twjrqt5ldX2UKGgGR0Bwqx0GNaQnaAdLpGgIR0C7TwfE87p3dX2UKGgGR0BxsxUBGQS0aAdLs2gIR0C7TyhVU+9rdX2UKGgGR0BxQ63MINVjaAdLsGgIR0C7Tyvfj0cwdX2UKGgGR0BxZOiSJTESaAdLy2gIR0C7Tzcpb2UTdX2UKGgGR0BzR7mYBvJjaAdLsWgIR0C7T16MBIWhdX2UKGgGR0BxstFRYRukaAdLsWgIR0C7T2oXsPatdX2UKGgGR0BxtXy7PIGRaAdLn2gIR0C7T3vlZHNHdX2UKGgGR0Bz1sE2YOUdaAdLzGgIR0C7T5D0Dlo2dX2UKGgGR0BwJTu5SWJKaAdLsmgIR0C7T5sp1A7gdX2UKGgGR0BMiAmZ3LV4aAdLcGgIR0C7T51B6a9cdX2UKGgGR0BwPHZ5AyEdaAdLoWgIR0C7T7hG6PKddX2UKGgGR0BzkQLH+6y0aAdLwWgIR0C7T9hZlnRLdX2UKGgGR0BvdKHqNZNgaAdLkmgIR0C7T+IT0xubdX2UKGgGR0BwUFA7gbZOaAdLpWgIR0C7T+qFuejEdX2UKGgGR0Bz9ZmYjSogaAdLp2gIR0C7T/ilBQendX2UKGgGR0Bwb7O6d1+zaAdL5mgIR0C7UAUu6ErYdX2UKGgGR0BTVZHI6r/9aAdLemgIR0C7UBHY6GQCdX2UKGgGR0ByCxXeWOZLaAdLpWgIR0C7UA7lA/s3dX2UKGgGR0B0TKNVBD5TaAdLyWgIR0C7UA/JA+pwdX2UKGgGR0ByTYxrSE13aAdLuGgIR0C7UCLzXjEOdX2UKGgGR0Bw9fSmZVn3aAdLrmgIR0C7UDsvEjxDdX2UKGgGR0BzRq7TUiIMaAdLymgIR0C7UEAumJm/dX2UKGgGR0ByvGejEehgaAdLvmgIR0C7UFDho/RmdX2UKGgGR0Bwcxd8iOebaAdLomgIR0C7UFEExIrfdX2UKGgGR0B0A9ky1uzhaAdLrGgIR0C7UGZUtI07dX2UKGgGR0BxA3nr6ciGaAdLrmgIR0C7UGpEhJRPdX2UKGgGR0BxqSJ+DvmYaAdLvWgIR0C7UJTifg76dX2UKGgGR0BxxjfzjFQ3aAdLmWgIR0C7UJlEJBw/dX2UKGgGR0ByfNcmjTKDaAdLrmgIR0C7UJ/d69kCdX2UKGgGR0By1K9Ba9saaAdLvmgIR0C7UL2CqZMMdX2UKGgGR0ByQGRMewLWaAdLu2gIR0C7UNIk/r0KdX2UKGgGR0Bws4ouwosqaAdLsGgIR0C7UN/qcEvCdX2UKGgGR0BwRPTF2mpEaAdLtWgIR0C7UOXhfjS5dX2UKGgGR0BzZCnuRcNZaAdLv2gIR0C7UPWtEG7jdX2UKGgGR0BxZdd6cAinaAdLsWgIR0C7UPfRqoIfdX2UKGgGR0ByFBrZamoBaAdLomgIR0C7UQCWE9McdX2UKGgGR0B0Axmthd+oaAdL2mgIR0C7UQpd8iOedX2UKGgGR0Bw6x7x/d6+aAdLqWgIR0C7UQ6VMVUNdX2UKGgGR0Bw9OGetjkNaAdLsGgIR0C7USgTqSowdX2UKGgGR0Bw065BkZrIaAdLtGgIR0C7USxwyZa3dX2UKGgGR0By8KkgwGnoaAdLpmgIR0C7UTWhVU++dX2UKGgGR0Bz3juRcNYsaAdLxWgIR0C7UVXYtg8bdX2UKGgGR0BxPEmLLpzLaAdLsWgIR0C7UXPJA+pwdX2UKGgGR0By9bN2TxG2aAdLv2gIR0C7UYEPUaybdX2UKGgGR0BzJ0kqtozvaAdLwmgIR0C7UY7W3BpIdX2UKGgGR0ByLlNYbKigaAdLk2gIR0C7UaTD0lJIdX2UKGgGR0BzW7oA4n4PaAdLw2gIR0C7Ua2AG0NSdX2UKGgGR0BxXVJpWV/uaAdLumgIR0C7UbbMC9ytdX2UKGgGR0BxD7GCI1tPaAdLn2gIR0C7UcwFC9h7dX2UKGgGR0BzVTVwxWT5aAdLxGgIR0C7UcxNM496dX2UKGgGR0BwrP3AVO9GaAdLuGgIR0C7UdKXv6TGdX2UKGgGR0ByHwl8gIQfaAdLtmgIR0C7UdiXD3uedX2UKGgGR0BzKmZmZmZmaAdL2GgIR0C7UehdY4hmdX2UKGgGR0BwamNzbN8maAdLpWgIR0C7Ue2lEZzgdX2UKGgGR0BzPZM7EHdHaAdLyGgIR0C7UfY7eVLSdX2UKGgGR0Bx2xE8aGYbaAdLomgIR0C7UfcJhOQAdX2UKGgGR0Bx1QRODaoNaAdLrmgIR0C7UfvZdv87dX2UKGgGR0ByceEtdzGQaAdLm2gIR0C7Ug1yzXz2dX2UKGgGR0BwPyc9W6siaAdLomgIR0C7UkwnH/96dX2UKGgGR0BxW1AE+xGEaAdLwWgIR0C7UlemWMS9dX2UKGgGR0Bx7G2jO9nLaAdLumgIR0C7UlyGJvYOdX2UKGgGR0BxGIKKHfuUaAdLsmgIR0C7UnhLCemOdX2UKGgGR0BxuWgzxgAqaAdLvWgIR0C7Uo+wxFiKdX2UKGgGR0BwjkkgOjIraAdLo2gIR0C7UpXZ5AyEdX2UKGgGR0BwyoY64lQeaAdLo2gIR0C7Upw8r7O3dX2UKGgGR0Bz7BgjQiRoaAdLwWgIR0C7Up3gxagVdX2UKGgGR0Bx5+4UeuFIaAdLq2gIR0C7UrrrHEMtdX2UKGgGR0Bzw6N2ki2VaAdLyWgIR0C7UryFbmlqdX2UKGgGR0BxIzYwqRU4aAdLlGgIR0C7UsL9uP3jdX2UKGgGR0Byq4kOZssQaAdL1GgIR0C7Usjj3mFKdX2UKGgGR0BzzIi/wiJPaAdLvWgIR0C7UsoIjW07dX2UKGgGR0ByuDX2/SH/aAdLtWgIR0C7UtTfzjFRdX2UKGgGR0Bxe8qmTC+DaAdLwWgIR0C7Ut0bo8p1dX2UKGgGR0BzoBzfaYeDaAdLzWgIR0C7Uut1p0wKdX2UKGgGR0BzgmRyOq//aAdLpmgIR0C7UxI+4b0fdX2UKGgGR0BxM6KWLP2PaAdLomgIR0C7Uxw80UGndX2UKGgGR0BxBjWNFSbZaAdLqmgIR0C7UyEzCUHIdX2UKGgGR0B0KavW6K+BaAdLrWgIR0C7U0LFsHjZdX2UKGgGR0By8k4Qz1sdaAdLqGgIR0C7U13d9Dx9dX2UKGgGR0BwYJQIldC3aAdLu2gIR0C7U2k5yU9qdX2UKGgGR0BwixBt1p0waAdLtWgIR0C7U28VLzwudX2UKGgGR0BxanJFLFn7aAdLqmgIR0C7U4fZh8YydX2UKGgGR0BvHC+10DEFaAdLoWgIR0C7U4WNBF/hdX2UKGgGR0BxXo0l7dBTaAdLtGgIR0C7U4wTAWSEdX2UKGgGR0B0QVCJGe+VaAdLrmgIR0C7U6FbqyGBdX2UKGgGR0BwsJqVQhwEaAdLpmgIR0C7U6EPUaybdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22a572018b949a6bebd0602fe9ba5e5f13cefc7a585fd9b2c2d7835999b57630
3
+ size 147958
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bdf422304c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bdf42230550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bdf422305e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bdf42230670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bdf42230700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bdf42230790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bdf42230820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bdf422308b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bdf42230940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bdf422309d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bdf42230a60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bdf42230af0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bdf42b548c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 10010624,
25
+ "_total_timesteps": 10000000.0,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1712343365825427160,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3T4D3ORN4+kEl2vuMeHL9QVF0+aKpivgAAAAAAAAAAmvnOu/JJLD7SSZ49akcFv3enkbyeAXY9AAAAAAAAAADNx0c9sHOrP5kTIz4Wf/e+Txs8PAtSLD0AAAAAAAAAANoltL1SaP+5+XUIO7zqKjThPS27UnwgugAAAAAAAIA/AFV8vY4ClD+duDG+lZdEv4B5ib3Qut+9AAAAAAAAAADau7M9qdA+vPQPN76GZyC+DTP0POjIYj8AAIA/AACAP2bwSz7e9Ek/Gn6OO5rRJL/APcs+QkJ5vQAAAAAAAAAATW8bvRRuiroN+du6IvojtiiXDzv1UP05AACAPwAAgD+Aixy9XDMMvFwuCj4uQx09AQRjvTOU/z0AAIA/AACAP03qAb2ueaC6xebMO4aP8zcFh6463qmMNgAAAAAAAIA/s3sUPQQwBT5WAoK+GxOzvuB4nL1qHne+AAAAAAAAAACaKcQ6Z0OcP1v+nzvMXiy/SwjduvP5jroAAAAAAAAAAAA7sbysfao/zuKCvu82CL+ZHai8YkHNvQAAAAAAAAAAAHxsvVybWLqI7nw5vDEVsn9aDjlSPJK4AAAAAAAAgD+zDD8+AbWNP4ZEQz4eMCG/CFTAPn1NVz0AAAAAAAAAALOXej1lrbU/zN87P5OgPb0XZUS8QE3NPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0010623999999999079,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN7UFjd56eMAWyUS82MAXSUR0C7SYEXtShrdX2UKGgGR0Bywao5xR2saAdLx2gIR0C7SYXGS6lMdX2UKGgGR0BxxvK8tf5UaAdLsWgIR0C7SaNL+PzWdX2UKGgGR0BxRjalDWsjaAdLsmgIR0C7SagZ4wAVdX2UKGgGR0BwKjnV5KODaAdLpGgIR0C7Sao0/GEPdX2UKGgGR0Bw3wM/hVENaAdLoGgIR0C7ScoqTbFkdX2UKGgGR0BwuBswco6TaAdLumgIR0C7SdNalk6LdX2UKGgGR0Bzo8wUQCjlaAdLxmgIR0C7Tqtr0rbydX2UKGgGR0BwzpjmSyMUaAdLsGgIR0C7Tqtt/FzddX2UKGgGR0BynM8mrsByaAdLmmgIR0C7Trkq2BrfdX2UKGgGR0BxcyQ/5ckdaAdLx2gIR0C7TufjXFtLdX2UKGgGR0BxyKwdKdxyaAdLvWgIR0C7Tu05p8F7dX2UKGgGR0BvSt0Lc9GJaAdLnmgIR0C7TvYGUwBYdX2UKGgGR0Bxulfx+a0AaAdLtGgIR0C7Twjrqt5ldX2UKGgGR0Bwqx0GNaQnaAdLpGgIR0C7TwfE87p3dX2UKGgGR0BxsxUBGQS0aAdLs2gIR0C7TyhVU+9rdX2UKGgGR0BxQ63MINVjaAdLsGgIR0C7Tyvfj0cwdX2UKGgGR0BxZOiSJTESaAdLy2gIR0C7Tzcpb2UTdX2UKGgGR0BzR7mYBvJjaAdLsWgIR0C7T16MBIWhdX2UKGgGR0BxstFRYRukaAdLsWgIR0C7T2oXsPatdX2UKGgGR0BxtXy7PIGRaAdLn2gIR0C7T3vlZHNHdX2UKGgGR0Bz1sE2YOUdaAdLzGgIR0C7T5D0Dlo2dX2UKGgGR0BwJTu5SWJKaAdLsmgIR0C7T5sp1A7gdX2UKGgGR0BMiAmZ3LV4aAdLcGgIR0C7T51B6a9cdX2UKGgGR0BwPHZ5AyEdaAdLoWgIR0C7T7hG6PKddX2UKGgGR0BzkQLH+6y0aAdLwWgIR0C7T9hZlnRLdX2UKGgGR0BvdKHqNZNgaAdLkmgIR0C7T+IT0xubdX2UKGgGR0BwUFA7gbZOaAdLpWgIR0C7T+qFuejEdX2UKGgGR0Bz9ZmYjSogaAdLp2gIR0C7T/ilBQendX2UKGgGR0Bwb7O6d1+zaAdL5mgIR0C7UAUu6ErYdX2UKGgGR0BTVZHI6r/9aAdLemgIR0C7UBHY6GQCdX2UKGgGR0ByCxXeWOZLaAdLpWgIR0C7UA7lA/s3dX2UKGgGR0B0TKNVBD5TaAdLyWgIR0C7UA/JA+pwdX2UKGgGR0ByTYxrSE13aAdLuGgIR0C7UCLzXjEOdX2UKGgGR0Bw9fSmZVn3aAdLrmgIR0C7UDsvEjxDdX2UKGgGR0BzRq7TUiIMaAdLymgIR0C7UEAumJm/dX2UKGgGR0ByvGejEehgaAdLvmgIR0C7UFDho/RmdX2UKGgGR0Bwcxd8iOebaAdLomgIR0C7UFEExIrfdX2UKGgGR0B0A9ky1uzhaAdLrGgIR0C7UGZUtI07dX2UKGgGR0BxA3nr6ciGaAdLrmgIR0C7UGpEhJRPdX2UKGgGR0BxqSJ+DvmYaAdLvWgIR0C7UJTifg76dX2UKGgGR0BxxjfzjFQ3aAdLmWgIR0C7UJlEJBw/dX2UKGgGR0ByfNcmjTKDaAdLrmgIR0C7UJ/d69kCdX2UKGgGR0By1K9Ba9saaAdLvmgIR0C7UL2CqZMMdX2UKGgGR0ByQGRMewLWaAdLu2gIR0C7UNIk/r0KdX2UKGgGR0Bws4ouwosqaAdLsGgIR0C7UN/qcEvCdX2UKGgGR0BwRPTF2mpEaAdLtWgIR0C7UOXhfjS5dX2UKGgGR0BzZCnuRcNZaAdLv2gIR0C7UPWtEG7jdX2UKGgGR0BxZdd6cAinaAdLsWgIR0C7UPfRqoIfdX2UKGgGR0ByFBrZamoBaAdLomgIR0C7UQCWE9McdX2UKGgGR0B0Axmthd+oaAdL2mgIR0C7UQpd8iOedX2UKGgGR0Bw6x7x/d6+aAdLqWgIR0C7UQ6VMVUNdX2UKGgGR0Bw9OGetjkNaAdLsGgIR0C7USgTqSowdX2UKGgGR0Bw065BkZrIaAdLtGgIR0C7USxwyZa3dX2UKGgGR0By8KkgwGnoaAdLpmgIR0C7UTWhVU++dX2UKGgGR0Bz3juRcNYsaAdLxWgIR0C7UVXYtg8bdX2UKGgGR0BxPEmLLpzLaAdLsWgIR0C7UXPJA+pwdX2UKGgGR0By9bN2TxG2aAdLv2gIR0C7UYEPUaybdX2UKGgGR0BzJ0kqtozvaAdLwmgIR0C7UY7W3BpIdX2UKGgGR0ByLlNYbKigaAdLk2gIR0C7UaTD0lJIdX2UKGgGR0BzW7oA4n4PaAdLw2gIR0C7Ua2AG0NSdX2UKGgGR0BxXVJpWV/uaAdLumgIR0C7UbbMC9ytdX2UKGgGR0BxD7GCI1tPaAdLn2gIR0C7UcwFC9h7dX2UKGgGR0BzVTVwxWT5aAdLxGgIR0C7UcxNM496dX2UKGgGR0BwrP3AVO9GaAdLuGgIR0C7UdKXv6TGdX2UKGgGR0ByHwl8gIQfaAdLtmgIR0C7UdiXD3uedX2UKGgGR0BzKmZmZmZmaAdL2GgIR0C7UehdY4hmdX2UKGgGR0BwamNzbN8maAdLpWgIR0C7Ue2lEZzgdX2UKGgGR0BzPZM7EHdHaAdLyGgIR0C7UfY7eVLSdX2UKGgGR0Bx2xE8aGYbaAdLomgIR0C7UfcJhOQAdX2UKGgGR0Bx1QRODaoNaAdLrmgIR0C7UfvZdv87dX2UKGgGR0ByceEtdzGQaAdLm2gIR0C7Ug1yzXz2dX2UKGgGR0BwPyc9W6siaAdLomgIR0C7UkwnH/96dX2UKGgGR0BxW1AE+xGEaAdLwWgIR0C7UlemWMS9dX2UKGgGR0Bx7G2jO9nLaAdLumgIR0C7UlyGJvYOdX2UKGgGR0BxGIKKHfuUaAdLsmgIR0C7UnhLCemOdX2UKGgGR0BxuWgzxgAqaAdLvWgIR0C7Uo+wxFiKdX2UKGgGR0BwjkkgOjIraAdLo2gIR0C7UpXZ5AyEdX2UKGgGR0BwyoY64lQeaAdLo2gIR0C7Upw8r7O3dX2UKGgGR0Bz7BgjQiRoaAdLwWgIR0C7Up3gxagVdX2UKGgGR0Bx5+4UeuFIaAdLq2gIR0C7UrrrHEMtdX2UKGgGR0Bzw6N2ki2VaAdLyWgIR0C7UryFbmlqdX2UKGgGR0BxIzYwqRU4aAdLlGgIR0C7UsL9uP3jdX2UKGgGR0Byq4kOZssQaAdL1GgIR0C7Usjj3mFKdX2UKGgGR0BzzIi/wiJPaAdLvWgIR0C7UsoIjW07dX2UKGgGR0ByuDX2/SH/aAdLtWgIR0C7UtTfzjFRdX2UKGgGR0Bxe8qmTC+DaAdLwWgIR0C7Ut0bo8p1dX2UKGgGR0BzoBzfaYeDaAdLzWgIR0C7Uut1p0wKdX2UKGgGR0BzgmRyOq//aAdLpmgIR0C7UxI+4b0fdX2UKGgGR0BxM6KWLP2PaAdLomgIR0C7Uxw80UGndX2UKGgGR0BxBjWNFSbZaAdLqmgIR0C7UyEzCUHIdX2UKGgGR0B0KavW6K+BaAdLrWgIR0C7U0LFsHjZdX2UKGgGR0By8k4Qz1sdaAdLqGgIR0C7U13d9Dx9dX2UKGgGR0BwYJQIldC3aAdLu2gIR0C7U2k5yU9qdX2UKGgGR0BwixBt1p0waAdLtWgIR0C7U28VLzwudX2UKGgGR0BxanJFLFn7aAdLqmgIR0C7U4fZh8YydX2UKGgGR0BvHC+10DEFaAdLoWgIR0C7U4WNBF/hdX2UKGgGR0BxXo0l7dBTaAdLtGgIR0C7U4wTAWSEdX2UKGgGR0B0QVCJGe+VaAdLrmgIR0C7U6FbqyGBdX2UKGgGR0BwsJqVQhwEaAdLpmgIR0C7U6EPUaybdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 2444,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f36c16ff31a44fae0c848d1ee5033f093e02c90395629777e4d335c1730694e9
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:700a85f556dcf55fefbc6d3d761ec4fa11ee0ab2eab49484adcbe22689e9cb24
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 251.84216434094077, "std_reward": 15.07838964934599, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T14:54:21.797652"}
 
1
+ {"mean_reward": 292.92542408153975, "std_reward": 16.17638324961377, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-05T20:55:06.132436"}