Update README.md
Browse files
README.md
CHANGED
@@ -6,37 +6,32 @@ tags:
|
|
6 |
pipeline_tag: sentence-similarity
|
7 |
library_name: sentence-transformers
|
8 |
---
|
9 |
-
|
10 |
# SentenceTransformer
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
## Model Details
|
15 |
|
16 |
### Model Description
|
17 |
- **Model Type:** Sentence Transformer
|
18 |
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
19 |
-
- **Maximum Sequence Length:**
|
20 |
-
- **Output Dimensionality:**
|
21 |
- **Similarity Function:** Cosine Similarity
|
22 |
<!-- - **Training Dataset:** Unknown -->
|
23 |
<!-- - **Language:** Unknown -->
|
24 |
<!-- - **License:** Unknown -->
|
25 |
|
26 |
-
### Model Sources
|
27 |
-
|
28 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
29 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
30 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
31 |
-
|
32 |
-
### Full Model Architecture
|
33 |
-
|
34 |
-
```
|
35 |
-
SentenceTransformer(
|
36 |
-
(0): CLIPQwen2VLWrapper()
|
37 |
-
)
|
38 |
-
```
|
39 |
-
|
40 |
## Usage
|
41 |
|
42 |
### Direct Usage (Sentence Transformers)
|
@@ -44,96 +39,41 @@ SentenceTransformer(
|
|
44 |
First install the Sentence Transformers library:
|
45 |
|
46 |
```bash
|
47 |
-
pip install -U sentence-transformers
|
48 |
```
|
49 |
|
50 |
Then you can load this model and run inference.
|
51 |
```python
|
52 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
# Download from the 🤗 Hub
|
55 |
-
model = SentenceTransformer("oshizo/japanese-clip-qwen2_vl-exp-0126")
|
56 |
-
# Run inference
|
57 |
sentences = [
|
58 |
-
'
|
59 |
-
"
|
60 |
-
'He drove to the stadium.',
|
61 |
]
|
62 |
-
|
63 |
-
|
64 |
-
#
|
65 |
-
|
66 |
-
# Get the similarity scores for the embeddings
|
67 |
-
similarities = model.similarity(embeddings, embeddings)
|
68 |
-
print(similarities.shape)
|
69 |
-
# [3, 3]
|
70 |
-
```
|
71 |
-
|
72 |
-
<!--
|
73 |
-
### Direct Usage (Transformers)
|
74 |
-
|
75 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
76 |
-
|
77 |
-
</details>
|
78 |
-
-->
|
79 |
-
|
80 |
-
<!--
|
81 |
-
### Downstream Usage (Sentence Transformers)
|
82 |
-
|
83 |
-
You can finetune this model on your own dataset.
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
94 |
-
-->
|
95 |
-
|
96 |
-
<!--
|
97 |
-
## Bias, Risks and Limitations
|
98 |
-
|
99 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
100 |
-
-->
|
101 |
-
|
102 |
-
<!--
|
103 |
-
### Recommendations
|
104 |
-
|
105 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
106 |
-
-->
|
107 |
-
|
108 |
-
## Training Details
|
109 |
-
|
110 |
-
### Framework Versions
|
111 |
-
- Python: 3.11.6
|
112 |
-
- Sentence Transformers: 3.3.1
|
113 |
-
- Transformers: 4.47.1
|
114 |
-
- PyTorch: 2.5.1+cu121
|
115 |
-
- Accelerate: 1.1.1
|
116 |
-
- Datasets: 2.19.0
|
117 |
-
- Tokenizers: 0.21.0
|
118 |
-
|
119 |
-
## Citation
|
120 |
-
|
121 |
-
### BibTeX
|
122 |
-
|
123 |
-
<!--
|
124 |
-
## Glossary
|
125 |
-
|
126 |
-
*Clearly define terms in order to be accessible across audiences.*
|
127 |
-
-->
|
128 |
-
|
129 |
-
<!--
|
130 |
-
## Model Card Authors
|
131 |
-
|
132 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
133 |
-
-->
|
134 |
|
135 |
-
|
136 |
-
|
|
|
137 |
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
6 |
pipeline_tag: sentence-similarity
|
7 |
library_name: sentence-transformers
|
8 |
---
|
|
|
9 |
# SentenceTransformer
|
10 |
|
11 |
+
このモデルは実験的なモデルです。
|
12 |
+
詳細は[ブログ記事](https://note.com/oshizo/n/n473a0124585b)を、関連するソースコードは[リポジトリ](https://github.com/oshizo/japanese-clip-qwen2_vl/)を参照してください。
|
13 |
+
|
14 |
+
|
15 |
+
前回のバージョン[oshizo/japanese-clip-qwen2_vl-exp-0101](https://huggingface.co/oshizo/japanese-clip-qwen2_vl-exp-0101)との差分
|
16 |
+
* テキスト埋め込みモデルを[pkshatech/GLuCoSE-base-ja-v2](https://huggingface.co/pkshatech/GLuCoSE-base-ja-v2)に変更
|
17 |
+
* 学習データを公開しました
|
18 |
+
* [oshizo/japanese-text-image-retrieval-train](https://huggingface.co/datasets/oshizo/japanese-text-image-retrieval-train)
|
19 |
+
* OCRテキストをもとにQwen2.5-14B質問を生成し、質問-ページ画像のペアによる学習を行いました
|
20 |
+
* ドキュメント画像の解像度(長いほうの辺)は588px、700px、896pxの三種類で学習を行いました(前回は588pxのみ)
|
21 |
+
|
22 |
|
23 |
## Model Details
|
24 |
|
25 |
### Model Description
|
26 |
- **Model Type:** Sentence Transformer
|
27 |
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
28 |
+
- **Maximum Sequence Length:** 512 tokens
|
29 |
+
- **Output Dimensionality:** 768 dimensions
|
30 |
- **Similarity Function:** Cosine Similarity
|
31 |
<!-- - **Training Dataset:** Unknown -->
|
32 |
<!-- - **Language:** Unknown -->
|
33 |
<!-- - **License:** Unknown -->
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
## Usage
|
36 |
|
37 |
### Direct Usage (Sentence Transformers)
|
|
|
39 |
First install the Sentence Transformers library:
|
40 |
|
41 |
```bash
|
42 |
+
pip install -U sentence-transformers fugashi SentencePiece
|
43 |
```
|
44 |
|
45 |
Then you can load this model and run inference.
|
46 |
```python
|
47 |
from sentence_transformers import SentenceTransformer
|
48 |
+
model = SentenceTransformer("oshizo/japanese-clip-qwen2_vl-exp-0126", trust_remote_code=True)
|
49 |
+
|
50 |
+
import io
|
51 |
+
import requests
|
52 |
+
from PIL import Image
|
53 |
|
|
|
|
|
|
|
54 |
sentences = [
|
55 |
+
'モノクロの男性の肖像写真。軍服を着て石の階段に座っている。',
|
56 |
+
"庭で茶色の犬がこちらを向いて座っている。"
|
|
|
57 |
]
|
58 |
+
text_embeddings = model.encode(sentences)
|
59 |
+
text_embeddings.shape
|
60 |
+
# (2, 1024)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
image_urls = [
|
63 |
+
'https://upload.wikimedia.org/wikipedia/commons/7/73/Shigenobu_Okuma_5.jpg',
|
64 |
+
'https://upload.wikimedia.org/wikipedia/commons/7/78/Akita_inu.jpeg'
|
65 |
+
]
|
66 |
+
images = [
|
67 |
+
Image.open(io.BytesIO(requests.get(image_urls[0]).content)).resize((150, 240)),
|
68 |
+
Image.open(io.BytesIO(requests.get(image_urls[1]).content)).resize((240, 150))
|
69 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
image_embeddings = model.encode(images)
|
72 |
+
image_embeddings.shape
|
73 |
+
# (2, 1024)
|
74 |
|
75 |
+
similarities = model.similarity(text_embeddings, image_embeddings)
|
76 |
+
similarities
|
77 |
+
# tensor([[ 2.6399e-01, 8.1531e-02],
|
78 |
+
# [-2.4970e-04, 3.1410e-01]])
|
79 |
+
```
|