--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: skops model_file: classifier.skops widget: - structuredData: credibleSetConfidence: - 0.75 - 0.75 - 0.75 distanceFootprintMean: - 0.9722118973731995 - 0.9389963746070862 - 0.96164870262146 distanceFootprintMeanNeighbourhood: - 0.9722118973731995 - 0.9389963746070862 - 0.96164870262146 distanceSentinelFootprint: - 0.9722118973731995 - 0.9389963746070862 - 0.96164870262146 distanceSentinelFootprintNeighbourhood: - 0.9722118973731995 - 0.9389963746070862 - 0.96164870262146 distanceSentinelTss: - 0.9722118973731995 - 0.9389963746070862 - 0.9519312381744385 distanceSentinelTssNeighbourhood: - 0.9722750186920166 - 0.9390574097633362 - 0.9519931077957153 distanceTssMean: - 0.9722118973731995 - 0.9389963746070862 - 0.9519312381744385 distanceTssMeanNeighbourhood: - 0.9722750186920166 - 0.9390574097633362 - 0.9519931077957153 eQtlColocClppMaximum: - 0.0 - 0.0 - 0.0 eQtlColocClppMaximumNeighbourhood: - 0.0 - 0.0 - 0.0 eQtlColocH4Maximum: - 0.0 - 0.0 - 0.0 eQtlColocH4MaximumNeighbourhood: - 0.0 - 0.0 - 0.0 geneCount500kb: - 15.0 - 15.0 - 15.0 geneId: - ENSG00000116133 - ENSG00000162396 - ENSG00000162398 goldStandardSet: - negative - negative - negative pQtlColocClppMaximum: - 0.0 - 0.0 - 0.0 pQtlColocClppMaximumNeighbourhood: - 0.0 - 0.0 - 0.0 pQtlColocH4Maximum: - 0.0 - 0.0 - 0.0 pQtlColocH4MaximumNeighbourhood: - 0.0 - 0.0 - 0.0 proteinGeneCount500kb: - 7.0 - 7.0 - 7.0 sQtlColocClppMaximum: - 0.0 - 0.0 - 0.0 sQtlColocClppMaximumNeighbourhood: - 0.0 - 0.0 - 0.0 sQtlColocH4Maximum: - 0.0 - 0.0 - 0.0 sQtlColocH4MaximumNeighbourhood: - 0.0 - 0.0 - 0.0 studyLocusId: - 02c442ea4fa5ab80586a6d1ff6afa843 - 02c442ea4fa5ab80586a6d1ff6afa843 - 02c442ea4fa5ab80586a6d1ff6afa843 traitFromSourceMappedId: - EFO_0004611 - EFO_0004611 - EFO_0004611 vepMaximum: - 0.0 - 0.0 - 0.0 vepMaximumNeighbourhood: - 0.0 - 0.0 - 0.0 vepMean: - 0.0 - 0.0 - 0.0 vepMeanNeighbourhood: - 0.0 - 0.0 - 0.0 --- # Model description The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are: - Distance: (from credible set variants to gene) - Molecular QTL Colocalization - Variant Pathogenicity: (from VEP) More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/ ## Intended uses & limitations [More Information Needed] ## Training Procedure Gradient Boosting Classifier ### Hyperparameters
Click to expand | Hyperparameter | Value | |--------------------------|--------------| | ccp_alpha | 0 | | criterion | friedman_mse | | init | | | learning_rate | 0.1 | | loss | log_loss | | max_depth | 3 | | max_features | | | max_leaf_nodes | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 5 | | min_weight_fraction_leaf | 0.0 | | n_estimators | 100 | | n_iter_no_change | | | random_state | 42 | | subsample | 0.7 | | tol | 0.0001 | | validation_fraction | 0.1 | | verbose | 0 | | warm_start | False |
# How to Get Started with the Model To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix. The model can then be used to make predictions using the `predict` method. More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/ # Citation https://doi.org/10.1038/s41588-021-00945-5 # License MIT