zhichao-geng Frinkleko commited on
Commit
1d58a77
·
verified ·
1 Parent(s): 85a8941

update paper link (#2)

Browse files

- update paper link (bfe7d4cc79193b9f53dac1f4247219774c951f18)


Co-authored-by: Xinjie Shen <[email protected]>

Files changed (1) hide show
  1. README.md +1 -2
README.md CHANGED
@@ -28,8 +28,7 @@ Overall, the v3 series of models have better search relevance, efficiency and in
28
  | [opensearch-neural-sparse-encoding-doc-v3-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill) | ✔️ | 67M | 0.517 | 1.8 |
29
 
30
  ## Overview
31
-
32
- - **Paper**: Coming Soon
33
  - **Codes**: [opensearch-sparse-model-tuning-sample](https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample/tree/l0_enhance)
34
 
35
  This is a learned sparse retrieval model. It encodes the documents to 30522 dimensional **sparse vectors**. For queries, it just use a tokenizer and a weight look-up table to generate sparse vectors. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token. And the similarity score is the inner product of query/document sparse vectors.
 
28
  | [opensearch-neural-sparse-encoding-doc-v3-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill) | ✔️ | 67M | 0.517 | 1.8 |
29
 
30
  ## Overview
31
+ - **Paper**: [Exploring $\ell_0$ Sparsification for Inference-free Sparse Retrievers ](https://arxiv.org/abs/2504.14839)
 
32
  - **Codes**: [opensearch-sparse-model-tuning-sample](https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample/tree/l0_enhance)
33
 
34
  This is a learned sparse retrieval model. It encodes the documents to 30522 dimensional **sparse vectors**. For queries, it just use a tokenizer and a weight look-up table to generate sparse vectors. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token. And the similarity score is the inner product of query/document sparse vectors.