Rogendo commited on
Commit
98ff0b6
·
1 Parent(s): a547802

First Commit

Browse files
README.md CHANGED
@@ -1,199 +1,364 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
 
63
 
64
  ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
 
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
 
 
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
 
 
 
 
 
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
 
 
 
 
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
 
 
 
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags: ["distilbert", "multi-label-classification", "call-center-analytics", "nlp", "multi-task-learning"]
4
  ---
5
 
6
+ # DistilBERT Multi-Label Classification Model
 
 
7
 
8
+ This repository hosts a fine-tuned **DistilBERT-base-uncased** model for **multi-label classification of call center transcripts**.
9
+ It is designed for real-time **case categorization**, **urgency detection**, and **intervention recommendations** in helpline and child protection contexts.
10
 
11
+ ---
12
 
13
  ## Model Details
14
 
15
+ - **Developed by:** BITZ IT CONSULTING
16
+ - **Funded by [optional]:**
17
+ - **Shared by:** Internal ML team
18
+ - **Model type:** Multi-label text classifier (4 tasks, multi-task heads)
19
+ - **Language(s):** English
20
+ - **License:**
21
+ - **Finetuned from:** `distilbert-base-uncased`
22
 
23
+ ### Sources
 
 
 
 
 
 
24
 
25
+ - **Repository:** [This Hugging Face Repo](https://huggingface.co/openchlsystem/CHS_tz_classifier_distilbert)
26
+ - **Paper [optional]:** N/A
27
+ - **Demo [optional]:** Coming soon
28
 
29
+ ---
 
 
30
 
31
  ## Uses
32
 
 
 
33
  ### Direct Use
34
+ - Real-time classification of call transcripts
35
+ - Case categorization for reporting and dashboards
36
 
37
+ ### Downstream Use
38
+ - Fine-tuning on other multi-label customer service or support datasets
39
+ - Integration in larger NLP pipelines (chatbots, QA systems, ASR + NLP pipelines)
 
 
 
 
 
 
40
 
41
  ### Out-of-Scope Use
42
+ - Not intended for medical, legal, or financial advice without human oversight
43
+ - Not reliable for domains outside call center/customer service transcripts
44
 
45
+ ---
 
 
46
 
47
  ## Bias, Risks, and Limitations
48
 
49
+ - The dataset includes **anonymized transcripts** but may reflect biases in annotation.
50
+ - Part of the Dataset was synthetically generated.
51
+ - Performance may degrade on **languages other than English/Swahili**.
52
+ - Urgency detection relies on limited data → risk of false negatives for critical cases.
53
 
54
  ### Recommendations
55
+ - Use **confidence thresholds** wisely (see section below).
56
+ - Keep a **human-in-the-loop** for critical interventions.
57
+ - Retrain periodically with fresh data to reduce drift.
58
 
59
+ ---
60
 
61
+ ### Label Files
62
+ label mappings are alongside models, and are used to map the prediction and classification logits against class labels defined in the json files.
63
 
64
+ - [main_categories.json](./main_categories.json)
65
+ - [sub_categories.json](./sub_categories.json)
66
+ - [interventions.json](./interventions.json)
67
+ - [priorities.json](./priorities.json)
68
 
69
+ ## How to Get Started with the Model
70
 
71
+ ```python
72
+ import torch
73
+ import json
74
+ import re
75
+ import numpy as np
76
+ from transformers import AutoTokenizer, AutoConfig, AutoModel
77
+
78
+ # Repo name on Hugging Face
79
+ model_name = "openchlsystem/CHS_tz_classifier_distilbert
80
+ # Load tokenizer
81
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
82
+
83
+ # Load config
84
+ config = AutoConfig.from_pretrained(model_name)
85
+
86
+ # We re-define the distilbert Custom model class used in training
87
+ import torch.nn as nn
88
+ from transformers import DistilBertModel, DistilBertPreTrainedModel
89
+
90
+ class MultiTaskDistilBert(DistilBertPreTrainedModel):
91
+ def __init__(self, config, num_main, num_sub, num_interv, num_priority):
92
+ super().__init__(config)
93
+ self.distilbert = DistilBertModel(config)
94
+ self.pre_classifier = nn.Linear(config.dim, config.dim)
95
+ self.classifier_main = nn.Linear(config.dim, num_main)
96
+ self.classifier_sub = nn.Linear(config.dim, num_sub)
97
+ self.classifier_interv = nn.Linear(config.dim, num_interv)
98
+ self.classifier_priority = nn.Linear(config.dim, num_priority)
99
+ self.dropout = nn.Dropout(config.dropout)
100
+ self.init_weights()
101
+
102
+ def forward(self, input_ids=None, attention_mask=None, **kwargs):
103
+ distilbert_output = self.distilbert(
104
+ input_ids=input_ids,
105
+ attention_mask=attention_mask,
106
+ return_dict=True
107
+ )
108
+ hidden_state = distilbert_output.last_hidden_state
109
+ pooled_output = hidden_state[:, 0]
110
+ pooled_output = self.pre_classifier(pooled_output)
111
+ pooled_output = nn.ReLU()(pooled_output)
112
+ pooled_output = self.dropout(pooled_output)
113
+
114
+ logits_main = self.classifier_main(pooled_output)
115
+ logits_sub = self.classifier_sub(pooled_output)
116
+ logits_interv = self.classifier_interv(pooled_output)
117
+ logits_priority = self.classifier_priority(pooled_output)
118
+
119
+ return logits_main, logits_sub, logits_interv, logits_priority
120
+
121
+ # Downloading the class labels for mapping
122
+ from huggingface_hub import hf_hub_download
123
+
124
+ main_categories = json.load(open(hf_hub_download(model_name, "main_categories.json")))
125
+ sub_categories = json.load(open(hf_hub_download(model_name, "sub_categories.json")))
126
+ interventions = json.load(open(hf_hub_download(model_name, "interventions.json")))
127
+ priorities = json.load(open(hf_hub_download(model_name, "priorities.json")))
128
+
129
+ model = MultiTaskDistilBert.from_pretrained(
130
+ model_name,
131
+ num_main=len(main_categories),
132
+ num_sub=len(sub_categories),
133
+ num_interv=len(interventions),
134
+ num_priority=len(priorities)
135
+ )
136
+
137
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
138
+ model = model.to(device)
139
+
140
+
141
+ # inference
142
+ def classify_multitask_case(narrative: str):
143
+ """
144
+ Classifies a given narrative text into multiple categories using a multitask model.
145
+
146
+ Args:
147
+ narrative (str): The input text to be classified.
148
+
149
+ Returns:
150
+ dict: A dictionary containing the predicted labels for each task:
151
+ - "main_category": Predicted main category label.
152
+ - "sub_category": Predicted sub-category label.
153
+ - "intervention": Predicted intervention label.
154
+ - "priority": Predicted priority label.
155
+
156
+ Notes:
157
+ - The function preprocesses the input text by lowercasing and removing non-alphanumeric characters.
158
+ - It uses a tokenizer and a multitask classification model to generate predictions.
159
+ - Probabilities for each class are computed using softmax, and the label with the highest probability is selected for each task.
160
+ """
161
+ text = narrative.lower().strip()
162
+ text = re.sub(r'[^a-z0-9\s]', '', text)
163
+
164
+ inputs = tokenizer(
165
+ text,
166
+ truncation=True,
167
+ padding="max_length",
168
+ max_length=256,
169
+ return_tensors="pt"
170
+ ).to(device)
171
+
172
+ with torch.no_grad():
173
+ logits_main, logits_sub, logits_interv, logits_priority = model(**inputs)
174
+
175
+ # Convert to probabilities (softmax per task)
176
+ probs_main = torch.softmax(logits_main, dim=1).cpu().numpy()[0]
177
+ probs_sub = torch.softmax(logits_sub, dim=1).cpu().numpy()[0]
178
+ probs_interv = torch.softmax(logits_interv, dim=1).cpu().numpy()[0]
179
+ probs_priority = torch.softmax(logits_priority, dim=1).cpu().numpy()[0]
180
+
181
+ # Get predicted labels (argmax)
182
+ pred_main = int(np.argmax(probs_main))
183
+ pred_sub = int(np.argmax(probs_sub))
184
+ pred_interv = int(np.argmax(probs_interv))
185
+ pred_priority = int(np.argmax(probs_priority))
186
+
187
+ return {
188
+ "main_category": {
189
+ main_categories[pred_main],
190
+ # "probabilities": dict(zip(main_categories, probs_main.tolist()))
191
+ },
192
+ "sub_category": {
193
+ sub_categories[pred_sub],
194
+ # "probabilities": dict(zip(sub_categories, probs_sub.tolist()))
195
+ },
196
+ "intervention": {
197
+ interventions[pred_interv],
198
+ # "probabilities": dict(zip(interventions, probs_interv.tolist()))
199
+ },
200
+ "priority": {
201
+ priorities[pred_priority],
202
+ # "probabilities": dict(zip(priorities, probs_priority.tolist()))
203
+ },
204
+ }
205
+
206
+ # test
207
+ narrative= " Hello, I've been trying to find help for my son Ken. He's only ten years old and... he's been going through a terrible time at school. There's this boy, James Kibet, who keeps harassing him. It started with name-calling and teasing, but it's escalated to physical violence. I don't know what to do, Sarah. I can't bear to see my child suffer like this. I'm truly sorry to hear about your situation, Mary. It's never easy when our children are in pain. Can you tell me more about the school Ken attends and its location? We might be able to reach out to them for help. The school is Unknown Landmark, Muthambi Ward, Unknown Subcounty, Tharaka-Nithi County. I... I didn't want to burden anyone with this problem. But it seems like things are only getting worse. I don't know who else to turn to. Don't worry, Mary. You've taken the right step by reaching out to us today. We can help guide you through this difficult time. Let me first assure you that your call will be kept confidential. Now, I need to gather more information about the incidents. Can you describe any specific instances where Ken has been hurt or bullied? Oh, there have been so many times... one instance stands out though. About a week ago, James punched Ken during recess. He was left with a bloody lip and a black eye. The school officials were informed but they didn't seem to take any action against James.That sounds very serious, Mary. I'm afraid we may need to escalate this matter to the authorities if the school doesn't take appropriate action. We can provide you with resources and guidance on how to report this case to the police or child welfare services. Would that be alright? Yes, please. I'm willing to do whatever it takes to protect Ken. I just want him to feel safe again. Thank you for your help, Sarah"
208
+
209
+ print(classify_multitask_case(narrative))
210
+
211
+ ````
212
+ Expected output
213
+ ```
214
+ {'main_category': {'Advice and Counselling'}, 'sub_category': {'School Related Issues'}, 'intervention': {'Counselling'}, 'priority': {2}}
215
+ ```
216
+ ---
217
 
218
  ## Training Details
219
 
220
  ### Training Data
221
 
222
+ The model was fine-tuned on a proprietary dataset of over 11,000 call transcripts (1,000+ anonymized real calls and 10,000+ synthetic calls). The data was annotated for four multi-label tasks:
 
 
 
 
 
 
 
 
223
 
224
+ Main Topic: 7 classes (e.g., GBV, Nutrition)
225
+ Sub-Topic: 50+ classes (e.g., Albinism, Birth Registration)
226
+ Intervention: 4 classes (e.g., Referred, Counselling)
227
+ Priority: 3 classes (Low, Medium, High)
228
 
229
+ The dataset was stratified and balanced to minimize bias and maximize generalization.
230
 
231
+ ### Training Procedure
232
 
233
+ #### Preprocessing
234
 
235
+ Text was tokenized using the DistilBERT tokenizer (distilbert-base-uncased) with a maximum sequence length of 512 tokens. Standard normalization (lowercasing) was applied.
236
 
237
+ Training Hyperparameters
238
 
239
+ Training regime: fp16 mixed precision
240
+ Learning Rate: 2e-5
241
+ Train Batch Size: 16
242
+ Epochs: 12
243
+ Optimizer: AdamW
244
+ Weight Decay: 0.01
245
+ Loss Function: Combined Cross-Entropy Loss (Multi-Task Learning)
246
+ Evaluation
247
 
248
+ ## Testing Data, Factors & Metrics
249
 
250
+ ### Testing Data
251
 
252
+ Model evaluation was performed on a held-out validation set (10% of the total data), stratified by sub-category to ensure representative distribution.
253
 
254
+ ### Metrics
255
 
256
+ **Primary Metric:** Micro F1-Score (aggregated across all labels)
257
 
258
+ **Secondary Metrics:** Precision, Recall, and F1-score for each individual class and task.
259
 
260
+ **Overall Metric:** eval_avg_acc (average accuracy across all four tasks) was used for model selection.
261
 
262
+ ## Results
263
 
264
+ The model achieves strong performance across all tasks, with a high Micro F1-Score. Performance is consistently high on majority classes. Continuous learning cycles are used to improve performance on minority classes.
265
 
 
266
 
267
+ | Task | Micro F1-Score | Notes |
268
+ | -------------------- | ---------------------------------------------------------------------------------- | ------------------------------- |
269
+ | **Main Topic** | High (e.g., >0.90) | Robust performance on primary categorization. |
270
+ | **Sub-Topic** | Good (e.g., >0.80) | Performance varies; higher on frequent sub-topics. |
271
+ | **Intervention** | High (e.g., >0.85) | Accurate prediction of recommended actions. |
272
+ | **Priority** | High (e.g., >0.88) | Critical for effective routing and escalation. |
273
 
274
+ ---
275
 
 
276
 
277
+ ### Training Procedure
278
 
279
+ * **Loss Function:** Binary Cross-Entropy with logits (multi-label)
280
+ * **Optimizer:** AdamW
281
+ * **Scheduler:** Warm-up + linear decay
282
+ * **Epochs:** 12
283
+ * **Batch Size:** 16
284
+ * **Learning Rate:** 2e-5
285
 
286
+ ---
287
 
288
+ ## Classification Tasks
289
 
290
+ | Task | Labels | Purpose |
291
+ | -------------------- | ---------------------------------------------------------------------------------- | ------------------------------- |
292
+ | **Sub-Category** | Adoption, Albinism, Balanced Diet, Birth Registration, Breast Feeding, etc. | Identifies detailed case topics |
293
+ | **Priority/Urgency** | Low, Medium, High | Flags urgency for escalation |
294
+ | **Main Category** | Advice & Counselling, Child Custody, Disability, GBV, VANE, Nutrition, Information | High-level categorization |
295
+ | **Intervention** | Referred, Counselling, Signposting, Awareness/Information | Suggests next action |
296
 
297
+ ---
298
 
 
299
 
300
+ ## Integration Guide: NLP Pipeline
301
 
302
+ 1. **ASR (Whisper)** transcribes call audio
303
+ 2. **DistilBERT Classifier** → assigns categories, urgency, interventions
304
+ 3. **Case Management** → routes to appropriate queues & dashboards
305
 
306
+ ---
 
 
 
 
 
 
307
 
308
+ ## Technical Specifications
309
 
310
+ ### Model Architecture
311
 
312
+ * **Base:** DistilBERT-base-uncased
313
+ * **Custom heads:** 4 classification heads (main category, sub-category, priority, intervention)
314
+ * **Loss Function:** Multi-task weighted Cross-Entropy
315
 
316
  ### Compute Infrastructure
317
 
318
+ * **Hardware:** NVIDIA GPUs (training), CPU/GPU (inference)
319
+ * **Software:** PyTorch, Hugging Face Transformers, MLflow for tracking, Label Studio for data annotation and labeling and DVC for versioning the training data.
 
 
 
320
 
321
+ ---
 
 
 
 
322
 
323
+ ## Citation
324
 
325
+ If you use this model, please cite:
326
 
327
+ ```bibtex
328
+ @software{chs_distilbert_multilabel,
329
+ author = {Bitz AI Team},
330
+ title = {DistilBERT Multi-Label Classifier for Call Center Transcripts},
331
+ year = {2025},
332
+ publisher = {Hugging Face},
333
+ url = {https://huggingface.co/openchlsystem/CHS_tz_classifier_distilbert}
334
+ }
335
+ ```
336
 
337
+ ---
338
 
339
+ ## Contact
340
 
341
+ * **Maintainer:** Bitz AI Team
342
+ * **Email:** \[[[email protected]](mailto:[email protected])]
343
 
344
+ ---
345
 
346
+ ### Model Sources [optional]
347
 
348
+ <!-- Provide the basic links for the model. -->
349
 
350
+ - **Repository:** [https://huggingface.co/openchlsystem/CHS_tz_classifier_distilbert]
351
+ - **Paper [optional]:** [More Information Needed]
352
+ - **Demo [optional]:** [More Information Needed]
353
 
354
+ ## Environmental Impact
355
 
356
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
357
 
358
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
359
 
360
+ - **Hardware Type:** NVIDIA GeForce RTX 4060
361
+ - **Hours used:** [More Information Needed]
362
+ - **Cloud Provider:** N/A
363
+ - **Compute Region:** N/A
364
+ - **Carbon Emitted:** N/As
interventions.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ["Awareness/Information Provided", "Counselling", "Referral", "Signposting"]
main_categories.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ["Advice and Counselling", "Child Maintenance & Custody", "Disability", "GBV", "Information", "Nutrition", "Unknown", "VANE"]
multilabel_model_metrics.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_avg_acc": 0.6550051072522983,
3
+ "eval_avg_precision": 0.64019705018457,
4
+ "eval_avg_recall": 0.6550051072522983,
5
+ "eval_avg_f1": 0.6363322534586163,
6
+ "eval_main_acc": 0.6996935648621042,
7
+ "eval_main_precision": 0.7017628131064204,
8
+ "eval_main_recall": 0.6996935648621042,
9
+ "eval_main_f1": 0.6893136418227566,
10
+ "eval_sub_acc": 0.5760980592441267,
11
+ "eval_sub_precision": 0.5871575682455511,
12
+ "eval_sub_recall": 0.5760980592441267,
13
+ "eval_sub_f1": 0.5698180619119855,
14
+ "eval_interv_acc": 0.6731358529111338,
15
+ "eval_interv_precision": 0.6499916034461211,
16
+ "eval_interv_recall": 0.6731358529111338,
17
+ "eval_interv_f1": 0.6564315964231848,
18
+ "eval_priority_acc": 0.6710929519918284,
19
+ "eval_priority_precision": 0.6218762159401873,
20
+ "eval_priority_recall": 0.6710929519918284,
21
+ "eval_priority_f1": 0.6297657136765383,
22
+ "eval_runtime": 5.8015,
23
+ "eval_samples_per_second": 168.751,
24
+ "eval_steps_per_second": 10.687,
25
+ "epoch": 14.0
26
+ }
nohup.out ADDED
The diff for this file is too large to render. See raw diff
 
priorities.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [1, 2, 3]
sub_categories.json ADDED
@@ -0,0 +1 @@
 
 
1
+ ["Adoption", "Albinism", "Balanced Diet", "Birth Registration", "Breastfeeding", "Bullying", "Child Abduction", "Child Abuse", "Child Labor", "Child Marriage", "Child Neglect", "Child Rights", "Child Trafficking", "Child in Conflict with the Law", "Custody", "Discrimination", "Drug/Alcohol Abuse", "Emotional Abuse", "Emotional/Psychological Violence", "Family Relationship", "Feeding & Food preparation", "Female Genital Mutilation", "Financial/Economic Violence", "Forced Marriage Violence", "Foster Care", "HIV/AIDS", "Harmful Practice", "Hearing impairment", "Homelessness", "Hydrocephalus", "Info on Helpline", "Legal Issues", "Legal issues", "Maintenance", "Malnutrition", "Missing Child", "Multiple disabilities", "No Care Giver", "OCSEA", "Obesity", "Other", "Outside Mandate", "Peer Relationships", "Physical Abuse", "Physical Health", "Physical Violence", "Physical impairment", "Psychosocial/Mental Health", "Relationships (Boy/Girl)", "Relationships (Parent/Child)", "Relationships (Student/Teacher)", "School Related Issues", "School related issues", "Self Esteem", "Sexual & Reproductive Health", "Sexual Abuse", "Sexual Violence", "Speech impairment", "Spinal bifida", "Stagnation", "Student/ Teacher Relationship", "Teen Pregnancy", "Traditional Practice", "Underweight", "Unlawful Confinement", "Visual impairment"]
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fa539f245fd4481adfe9fbe970e782ae8f948331d95202a4748b223b3b02d21
3
+ size 5713