Update Readme
Browse files
README.md
CHANGED
@@ -50,36 +50,36 @@ from transformers import WhisperForConditionalGeneration, AutoProcessor, AutoTok
|
|
50 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
51 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
52 |
|
53 |
-
# When changing the configuration of the preprocessing convolution layers make sure their final output has the shape b x 1280 x seq.
|
54 |
# See custom config in model.py for configuration options.
|
55 |
|
|
|
56 |
config = AutoConfig.from_pretrained(
|
57 |
"mrprimenotes/sign-whisper-german",
|
58 |
trust_remote_code=True,
|
59 |
use_first_embeddings=True,
|
60 |
-
embedding_stride=2,
|
61 |
-
conv_dropout=0.1,
|
62 |
skip_connections=True,
|
63 |
-
conv_preprocessing_layers=[
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
)
|
84 |
|
85 |
tokenizer = AutoTokenizer.from_pretrained("mrprimenotes/sign-whisper-german")
|
@@ -95,7 +95,7 @@ model = AutoModel.from_pretrained(
|
|
95 |
device_map='auto'
|
96 |
).to(device)
|
97 |
|
98 |
-
# raw model outputs:
|
99 |
# output = model(input_features, labels=labels)
|
100 |
# e.g.
|
101 |
# output.loss
|
@@ -104,6 +104,9 @@ model = AutoModel.from_pretrained(
|
|
104 |
train_dataset = YourSignDataset(...)
|
105 |
val_dataset = YourSignDataset(...)
|
106 |
|
|
|
|
|
|
|
107 |
# Define training arguments
|
108 |
training_args = TrainingArguments(
|
109 |
output_dir="./sign-whisper-german",
|
|
|
50 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
51 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
52 |
|
|
|
53 |
# See custom config in model.py for configuration options.
|
54 |
|
55 |
+
# First load the config using AutoConfig
|
56 |
config = AutoConfig.from_pretrained(
|
57 |
"mrprimenotes/sign-whisper-german",
|
58 |
trust_remote_code=True,
|
59 |
use_first_embeddings=True,
|
60 |
+
#embedding_stride=2,
|
61 |
+
#conv_dropout=0.1,
|
62 |
skip_connections=True,
|
63 |
+
conv_preprocessing_layers=[
|
64 |
+
{ # When changing conv_preprocessing_layers make sure their final output has the shape b x 1280 x seq.
|
65 |
+
"in_channels": 128,
|
66 |
+
"out_channels": 1280,
|
67 |
+
"kernel_size": 3,
|
68 |
+
"stride": 1,
|
69 |
+
"padding": 1,
|
70 |
+
"activation": "gelu",
|
71 |
+
"bias": True
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"in_channels": 1280,
|
75 |
+
"out_channels": 1280,
|
76 |
+
"kernel_size": 3,
|
77 |
+
"stride": 1,
|
78 |
+
"padding": 1,
|
79 |
+
"activation": "gelu",
|
80 |
+
"bias": True
|
81 |
+
}
|
82 |
+
]
|
83 |
)
|
84 |
|
85 |
tokenizer = AutoTokenizer.from_pretrained("mrprimenotes/sign-whisper-german")
|
|
|
95 |
device_map='auto'
|
96 |
).to(device)
|
97 |
|
98 |
+
# You can see raw model outputs as follows:
|
99 |
# output = model(input_features, labels=labels)
|
100 |
# e.g.
|
101 |
# output.loss
|
|
|
104 |
train_dataset = YourSignDataset(...)
|
105 |
val_dataset = YourSignDataset(...)
|
106 |
|
107 |
+
# Freeze the decoder for our purpose
|
108 |
+
model.freeze_decoder()
|
109 |
+
|
110 |
# Define training arguments
|
111 |
training_args = TrainingArguments(
|
112 |
output_dir="./sign-whisper-german",
|