mrprimenotes commited on
Commit
d76c439
·
verified ·
1 Parent(s): eee1db3

Update Readme

Browse files
Files changed (1) hide show
  1. README.md +27 -24
README.md CHANGED
@@ -50,36 +50,36 @@ from transformers import WhisperForConditionalGeneration, AutoProcessor, AutoTok
50
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
51
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
52
 
53
- # When changing the configuration of the preprocessing convolution layers make sure their final output has the shape b x 1280 x seq.
54
  # See custom config in model.py for configuration options.
55
 
 
56
  config = AutoConfig.from_pretrained(
57
  "mrprimenotes/sign-whisper-german",
58
  trust_remote_code=True,
59
  use_first_embeddings=True,
60
- embedding_stride=2,
61
- conv_dropout=0.1,
62
  skip_connections=True,
63
- conv_preprocessing_layers=[
64
- {
65
- "in_channels": 128,
66
- "out_channels": 1280,
67
- "kernel_size": 3,
68
- "stride": 1,
69
- "padding": 1,
70
- "activation": "gelu",
71
- "bias": True
72
- },
73
- {
74
- "in_channels": 1280,
75
- "out_channels": 1280,
76
- "kernel_size": 3,
77
- "stride": 2,
78
- "padding": 1,
79
- "activation": "gelu",
80
- "bias": True
81
- }
82
- ]
83
  )
84
 
85
  tokenizer = AutoTokenizer.from_pretrained("mrprimenotes/sign-whisper-german")
@@ -95,7 +95,7 @@ model = AutoModel.from_pretrained(
95
  device_map='auto'
96
  ).to(device)
97
 
98
- # raw model outputs:
99
  # output = model(input_features, labels=labels)
100
  # e.g.
101
  # output.loss
@@ -104,6 +104,9 @@ model = AutoModel.from_pretrained(
104
  train_dataset = YourSignDataset(...)
105
  val_dataset = YourSignDataset(...)
106
 
 
 
 
107
  # Define training arguments
108
  training_args = TrainingArguments(
109
  output_dir="./sign-whisper-german",
 
50
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
51
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
52
 
 
53
  # See custom config in model.py for configuration options.
54
 
55
+ # First load the config using AutoConfig
56
  config = AutoConfig.from_pretrained(
57
  "mrprimenotes/sign-whisper-german",
58
  trust_remote_code=True,
59
  use_first_embeddings=True,
60
+ #embedding_stride=2,
61
+ #conv_dropout=0.1,
62
  skip_connections=True,
63
+ conv_preprocessing_layers=[
64
+ { # When changing conv_preprocessing_layers make sure their final output has the shape b x 1280 x seq.
65
+ "in_channels": 128,
66
+ "out_channels": 1280,
67
+ "kernel_size": 3,
68
+ "stride": 1,
69
+ "padding": 1,
70
+ "activation": "gelu",
71
+ "bias": True
72
+ },
73
+ {
74
+ "in_channels": 1280,
75
+ "out_channels": 1280,
76
+ "kernel_size": 3,
77
+ "stride": 1,
78
+ "padding": 1,
79
+ "activation": "gelu",
80
+ "bias": True
81
+ }
82
+ ]
83
  )
84
 
85
  tokenizer = AutoTokenizer.from_pretrained("mrprimenotes/sign-whisper-german")
 
95
  device_map='auto'
96
  ).to(device)
97
 
98
+ # You can see raw model outputs as follows:
99
  # output = model(input_features, labels=labels)
100
  # e.g.
101
  # output.loss
 
104
  train_dataset = YourSignDataset(...)
105
  val_dataset = YourSignDataset(...)
106
 
107
+ # Freeze the decoder for our purpose
108
+ model.freeze_decoder()
109
+
110
  # Define training arguments
111
  training_args = TrainingArguments(
112
  output_dir="./sign-whisper-german",