mrprimenotes commited on
Commit
04cea1c
·
verified ·
1 Parent(s): 46a0628

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +18 -11
model.py CHANGED
@@ -31,7 +31,8 @@ class CustomWhisperConfig(WhisperConfig):
31
  "kernel_size": 3,
32
  "stride": 1,
33
  "padding": 1,
34
- "activation": "gelu"
 
35
  },
36
  {
37
  "in_channels": self.d_model,
@@ -39,7 +40,8 @@ class CustomWhisperConfig(WhisperConfig):
39
  "kernel_size": 3,
40
  "stride": 2,
41
  "padding": 1,
42
- "activation": "gelu"
 
43
  }
44
  ]
45
 
@@ -996,16 +998,21 @@ class WhisperEncoder(WhisperPreTrainedModel):
996
  # CUSTOM
997
  # Create conv layers dynamically based on config
998
  self.conv_layers = nn.ModuleList()
 
999
  for layer_config in config.conv_preprocessing_layers:
1000
- conv_layer = nn.Conv1d(
1001
- layer_config.in_channels,
1002
- layer_config.out_channels,
1003
- kernel_size=layer_config.kernel_size,
1004
- stride=layer_config.stride,
1005
- padding=layer_config.padding,
1006
- bias=config.conv_bias
1007
- )
1008
- self.conv_layers.append(conv_layer)
 
 
 
 
1009
 
1010
  self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
1011
  self.embed_positions.requires_grad_(False)
 
31
  "kernel_size": 3,
32
  "stride": 1,
33
  "padding": 1,
34
+ "activation": "gelu",
35
+ "bias": True
36
  },
37
  {
38
  "in_channels": self.d_model,
 
40
  "kernel_size": 3,
41
  "stride": 2,
42
  "padding": 1,
43
+ "activation": "gelu",
44
+ "bias": True
45
  }
46
  ]
47
 
 
998
  # CUSTOM
999
  # Create conv layers dynamically based on config
1000
  self.conv_layers = nn.ModuleList()
1001
+ self.conv_layers = nn.ModuleList()
1002
  for layer_config in config.conv_preprocessing_layers:
1003
+ # Create sequential module for each conv+activation pair
1004
+ conv_sequence = nn.Sequential(
1005
+ nn.Conv1d(
1006
+ layer_config["in_channels"],
1007
+ layer_config["out_channels"],
1008
+ kernel_size=layer_config["kernel_size"],
1009
+ stride=layer_config["stride"],
1010
+ padding=layer_config["padding"],
1011
+ bias=True
1012
+ ),
1013
+ nn.GELU() if layer_config["activation"] == "gelu" else nn.ReLU()
1014
+ )
1015
+ self.conv_layers.append(conv_sequence)
1016
 
1017
  self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
1018
  self.embed_positions.requires_grad_(False)