# coding=utf-8 # Copyright 2025 The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Union from transformers import PretrainedConfig from transformers import Qwen2Config from transformers import WhisperConfig from transformers.utils import logging from .modeling_navit_siglip import SiglipVisionConfig logger = logging.get_logger(__name__) class MiniCPMVSliceConfig(PretrainedConfig): model_type = "minicpmv" def __init__( self, patch_size=14, max_slice_nums=9, scale_resolution=448, **kwargs, ): super().__init__(**kwargs) self.patch_size = patch_size self.max_slice_nums = max_slice_nums self.scale_resolution = scale_resolution @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) if config_dict.get("model_type") == "minicpmv": config_dict = config_dict["slice_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class ConditionalChatTTSConfig(PretrainedConfig): model_type = "conditional_chattts" def __init__( self, llm_dim: int = 2560, hidden_size: int = 768, intermediate_size: int = 3072, num_attention_heads: int = 12, num_hidden_layers: int = 20, max_position_embeddings: int = 4096, num_audio_tokens: int = 626, num_text_tokens: int = 21178, num_mel_bins: int = 100, num_vq: int = 4, use_speaker_embedding: bool = True, use_llm_hidden_state: bool = False, spk_emb_token_id: int = 21143, num_spk_embs: int = 1, audio_bos_token_id: int = 21132, text_eos_token_id: int = 21133, use_text: bool = True, streaming: bool = True, streaming_text_chunk_size: int = 10, streaming_text_reserved_len: int = 300, streaming_audio_chunk_size: int = 50, attn_implementation: str = "sdpa", use_mlp: bool = True, aug_loss_weight: bool = True, do_sample: bool = True, top_p: float = 0.7, top_k: int = 20, repetition_penalty: float = 1.0, **kwargs, ): super().__init__(**kwargs) self.llm_dim = llm_dim self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = num_hidden_layers self.max_position_embeddings = max_position_embeddings self.num_audio_tokens = num_audio_tokens self.num_text_tokens = num_text_tokens self.num_mel_bins = num_mel_bins self.num_vq = num_vq self.use_speaker_embedding = use_speaker_embedding self.use_llm_hidden_state = use_llm_hidden_state self.spk_emb_token_id = spk_emb_token_id self.num_spk_embs = num_spk_embs self.audio_bos_token_id = audio_bos_token_id self.text_eos_token_id = text_eos_token_id self.use_text = use_text self.streaming = streaming self.streaming_text_chunk_size = streaming_text_chunk_size self.streaming_text_reserved_len = streaming_text_reserved_len self.streaming_audio_chunk_size = streaming_audio_chunk_size self.attn_implementation = attn_implementation self.use_mlp = use_mlp self.aug_loss_weight = aug_loss_weight self.do_sample = do_sample self.top_p = top_p self.top_k = top_k self.repetition_penalty = repetition_penalty class MiniCPMOConfig(Qwen2Config): model_type = "minicpmo" keys_to_ignore_at_inference = ["past_key_values"] default_vision_config = { "hidden_size": 1152, "image_size": 980, "intermediate_size": 4304, "model_type": "siglip", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14, } def __init__( self, use_cache=True, query_num=64, image_size=448, drop_vision_last_layer=True, batch_vision_input=True, slice_config=None, vision_config=None, audio_config=None, tts_config=None, use_image_id=True, vision_batch_size=16, audio_pool_step=2, audio_chunk_length=1.0, stream_input=False, init_vision=True, init_audio=True, init_tts=True, **kwargs, ): self.use_cache = use_cache self.query_num = query_num self.image_size = image_size self.drop_vision_last_layer = drop_vision_last_layer self.batch_vision_input = batch_vision_input self.use_image_id = use_image_id self.vision_batch_size = vision_batch_size self.audio_pool_step = audio_pool_step self.audio_chunk_length = audio_chunk_length self.stream_input = stream_input self.init_vision = init_vision self.init_audio = init_audio self.init_tts = init_tts if slice_config is None: self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1) else: self.slice_config = MiniCPMVSliceConfig(**slice_config) self.slice_mode = True # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes if vision_config is None: self.vision_config = SiglipVisionConfig(**self.default_vision_config) logger.info("vision_config is None, using default vision config") elif isinstance(vision_config, dict): self.vision_config = SiglipVisionConfig(**vision_config) elif isinstance(vision_config, SiglipVisionConfig): self.vision_config = vision_config if audio_config is None: self.audio_config = WhisperConfig() elif isinstance(audio_config, dict): self.audio_config = WhisperConfig(**audio_config) elif isinstance(audio_config, WhisperConfig): self.audio_config = audio_config if tts_config is None: self.tts_config = ConditionalChatTTSConfig() elif isinstance(tts_config, dict): self.tts_config = ConditionalChatTTSConfig(**tts_config) elif isinstance(tts_config, ConditionalChatTTSConfig): self.tts_config = tts_config self.patch_size = self.vision_config.patch_size super().__init__(**kwargs)