update
Browse files- README.md +1402 -0
- configuration_minicpm.py +1 -0
- modeling_minicpmo.py +424 -121
- modeling_navit_siglip.py +1 -0
- processing_minicpmo.py +6 -7
- utils.py +51 -2
README.md
ADDED
@@ -0,0 +1,1402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: image-text-to-text
|
3 |
+
datasets:
|
4 |
+
- openbmb/RLAIF-V-Dataset
|
5 |
+
library_name: transformers
|
6 |
+
language:
|
7 |
+
- multilingual
|
8 |
+
tags:
|
9 |
+
- minicpm-o
|
10 |
+
- omni
|
11 |
+
- vision
|
12 |
+
- ocr
|
13 |
+
- multi-image
|
14 |
+
- video
|
15 |
+
- custom_code
|
16 |
+
---
|
17 |
+
|
18 |
+
<h1>A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone</h1>
|
19 |
+
|
20 |
+
[GitHub](https://github.com/OpenBMB/MiniCPM-V) | [Online Demo](https://minicpm-omni-webdemo-us.modelbest.cn)</a>
|
21 |
+
|
22 |
+
|
23 |
+
## MiniCPM-o 2.6
|
24 |
+
|
25 |
+
**MiniCPM-o 2.6** is the latest and most capable model in the MiniCPM-o series. The model is built in an end-to-end fashion based on SigLip-400M, Whisper-medium-300M, ChatTTS-200M, and Qwen2.5-7B with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.6, and introduces new features for realtime speech conversation and multimodal live streaming. Notable features of MiniCPM-o 2.6 include:
|
26 |
+
|
27 |
+
- 🔥 **Leading Visual Capability.**
|
28 |
+
MiniCPM-o 2.6 achieves an average score of 70.2 on OpenCompass, a comprehensive evaluation over 8 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4o-202405, Gemini 1.5 Pro, and Claude 3.5 Sonnet** for single image understanding. It also **outperforms GPT-4V and Claude 3.5 Sonnet** in mutli-image and video understanding, and shows promising in-context learning capability.
|
29 |
+
|
30 |
+
- 🎙 **State-of-the-art Speech Capability.** MiniCPM-o 2.6 supports **bilingual realtime speech conversation with configurable voices** in English and Chinese. It **outperforms GPT-4o-realtime on audio understanding tasks** such as ASR and STT translation, and shows **state-of-the-art performance on speech conversation in both semantic and acoustic evaluations in the open-source community**. It also allows for fun features such as emotion/speed/style control, voice cloning, role play, etc.
|
31 |
+
|
32 |
+
- 🎬 **Strong Multimodal Live Streaming Capability.** As a new feature, MiniCPM-o 2.6 can **accept continous video and audio streams independent of user queries, and support realtime speech interaction**. It **outperforms GPT-4o-realtime and Claude 3.5 Sonnet and shows state-of-art performance in open-source community on StreamingBench**, a comprehensive benchmark for real-time video understanding, omni-source (video & audio) understanding , and multimodal contextual understanding.
|
33 |
+
|
34 |
+
- 💪 **Strong OCR Capability and Others.**
|
35 |
+
Advancing popular visual capabilites from MiniCPM-V series, MiniCPM-o 2.6 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344). It achieves **state-of-the-art performance on OCRBench for models under 25B, surpassing proprietary models such as GPT-4o-202405**.
|
36 |
+
Based on the the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) and [VisCPM](https://github.com/OpenBMB/VisCPM) techniques, it features **trustworthy behaviors**, outperforming GPT-4o and Claude 3.5 Sonnet on MMHal-Bench, and supports **multilingual capabilities** on more than 30 languages.
|
37 |
+
|
38 |
+
|
39 |
+
- 🚀 **Superior Efficiency.**
|
40 |
+
In addition to its friendly size, MiniCPM-o 2.6 also shows **state-of-the-art token density** (i.e., number of pixels encoded into each visual token). **It produces only 640 tokens when processing a 1.8M pixel image, which is 75% fewer than most models**. This directly improves the inference speed, first-token latency, memory usage, and power consumption. As a result, MiniCPM-o 2.6 can efficiently support **multimodal live streaming** on end-side devices such as iPad.
|
41 |
+
|
42 |
+
- 💫 **Easy Usage.**
|
43 |
+
MiniCPM-o 2.6 can be easily used in various ways: (1) [llama.cpp](XXX) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4) and [GGUF](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) format quantized models in 16 sizes, (3) [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [LLaMA-Factory](./docs/llamafactory_train.md), (5) quick local WebUI demo setup with [Gradio](#chat-with-our-demo-on-gradio), and (6) online web demo on [CN](https://minicpm-omni-webdemo.modelbest.cn/
|
44 |
+
) server and [US](https://minicpm-omni-webdemo-us.modelbest.cn/) server.
|
45 |
+
|
46 |
+
|
47 |
+
**Model Architecture.**
|
48 |
+
|
49 |
+
- **End-to-end Omni-modal Architecture.** Different modality encoder/decoders are connected and trained in an end-to-end fashion to fully exploit rich multimodal knowledge.
|
50 |
+
- **Omni-modal Live Streaming Mechanism.** (1) We change the offline modality encoder/decoders into online ones for streaminig inputs/outputs. (2) We devise a time-division multiplexing (TDM) mechanism for omni-modality streaminig processing in the LLM backbone. It divides parallel omni-modality streams into sequential info within small periodic time slices.
|
51 |
+
- **Configurable Speech Modeling Design.** We devise a multimodal system prompt, including traditional text system prompt, and a new audio system prompt to determine the assistant voice. This enables flexible voice configurations in inference time, and also facilitates voice cloning and description-based voice creation.
|
52 |
+
|
53 |
+
<div align="center">
|
54 |
+
<img src="https://github.com/yiranyyu/MiniCPM-V-private/blob/main/assets/minicpm-o-26-framework.png" , width=80%>
|
55 |
+
</div>
|
56 |
+
|
57 |
+
### Evaluation <!-- omit in toc -->
|
58 |
+
|
59 |
+
<div align="center">
|
60 |
+
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/radar.png" width=66% />
|
61 |
+
</div>
|
62 |
+
|
63 |
+
<details>
|
64 |
+
<summary>Click to view visual understanding results.</summary>
|
65 |
+
|
66 |
+
**Image Understanding**
|
67 |
+
|
68 |
+
<div align="center">
|
69 |
+
<table style="margin: 0px auto;">
|
70 |
+
<thead>
|
71 |
+
<tr>
|
72 |
+
<th align="left">Model</th>
|
73 |
+
<th>Size</th>
|
74 |
+
<th>Token Density<sup>+</sup></th>
|
75 |
+
<th>OpenCompass</th>
|
76 |
+
<th>OCRBench</th>
|
77 |
+
<th>MathVista mini</th>
|
78 |
+
<th>ChartQA</th>
|
79 |
+
<th>MMVet</th>
|
80 |
+
<th>MMStar</th>
|
81 |
+
<th>MME</th>
|
82 |
+
<th>MMB1.1 test</th>
|
83 |
+
<th>AI2D</th>
|
84 |
+
<th>MMMU val</th>
|
85 |
+
<th>HallusionBench</th>
|
86 |
+
<th>TextVQA val</th>
|
87 |
+
<th>DocVQA test</th>
|
88 |
+
<th>MathVerse mini</th>
|
89 |
+
<th>MathVision</th>
|
90 |
+
<th>MMHal Score</th>
|
91 |
+
</tr>
|
92 |
+
</thead>
|
93 |
+
<tbody align="center">
|
94 |
+
<tr>
|
95 |
+
<td colspan="19" align="left"><strong>Proprietary</strong></td>
|
96 |
+
</tr>
|
97 |
+
<tr>
|
98 |
+
<td nowrap="nowrap" align="left">GPT-4o-20240513</td>
|
99 |
+
<td>-</td>
|
100 |
+
<td>1088</td>
|
101 |
+
<td><u>69.9</u></td>
|
102 |
+
<td>736</td>
|
103 |
+
<td>61.3</td>
|
104 |
+
<td>85.7</td>
|
105 |
+
<td><strong>69.1</strong></td>
|
106 |
+
<td>63.9</td>
|
107 |
+
<td>2328.7</td>
|
108 |
+
<td>82.2</td>
|
109 |
+
<td>84.6</td>
|
110 |
+
<td><strong>69.2</strong></td>
|
111 |
+
<td><strong>55.0</strong></td>
|
112 |
+
<td>-</td>
|
113 |
+
<td>92.8</td>
|
114 |
+
<td><strong>50.2</strong></td>
|
115 |
+
<td><strong>30.4</strong></td>
|
116 |
+
<td><u>3.6</u></td>
|
117 |
+
</tr>
|
118 |
+
<tr>
|
119 |
+
<td nowrap="nowrap" align="left">Claude3.5-Sonnet</td>
|
120 |
+
<td>-</td>
|
121 |
+
<td>750</td>
|
122 |
+
<td>67.9</td>
|
123 |
+
<td>788</td>
|
124 |
+
<td>61.6</td>
|
125 |
+
<td><strong>90.8</strong></td>
|
126 |
+
<td>66.0</td>
|
127 |
+
<td>62.2</td>
|
128 |
+
<td>1920.0</td>
|
129 |
+
<td>78.5</td>
|
130 |
+
<td>80.2</td>
|
131 |
+
<td><u>65.9</u></td>
|
132 |
+
<td>49.9</td>
|
133 |
+
<td>-</td>
|
134 |
+
<td><strong>95.2</strong></td>
|
135 |
+
<td>-</td>
|
136 |
+
<td>-</td>
|
137 |
+
<td>3.4</td>
|
138 |
+
</tr>
|
139 |
+
<tr>
|
140 |
+
<td nowrap="nowrap" align="left">Gemini-1.5-Pro</td>
|
141 |
+
<td>-</td>
|
142 |
+
<td>-</td>
|
143 |
+
<td>64.4</td>
|
144 |
+
<td>754</td>
|
145 |
+
<td>57.7</td>
|
146 |
+
<td>81.3</td>
|
147 |
+
<td>64.0</td>
|
148 |
+
<td>59.1</td>
|
149 |
+
<td>2110.6</td>
|
150 |
+
<td>73.9</td>
|
151 |
+
<td>79.1</td>
|
152 |
+
<td>60.6</td>
|
153 |
+
<td>45.6</td>
|
154 |
+
<td>73.5</td>
|
155 |
+
<td>86.5</td>
|
156 |
+
<td>-</td>
|
157 |
+
<td>19.2</td>
|
158 |
+
<td>-</td>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td nowrap="nowrap" align="left">GPT-4o-mini-20240718</td>
|
162 |
+
<td>-</td>
|
163 |
+
<td>1088</td>
|
164 |
+
<td>64.1</td>
|
165 |
+
<td>785</td>
|
166 |
+
<td>52.4</td>
|
167 |
+
<td>-</td>
|
168 |
+
<td>66.9</td>
|
169 |
+
<td>54.8</td>
|
170 |
+
<td>2003.4</td>
|
171 |
+
<td>76.0</td>
|
172 |
+
<td>77.8</td>
|
173 |
+
<td>60.0</td>
|
174 |
+
<td>46.1</td>
|
175 |
+
<td>-</td>
|
176 |
+
<td>-</td>
|
177 |
+
<td>-</td>
|
178 |
+
<td>-</td>
|
179 |
+
<td>3.3</td>
|
180 |
+
</tr>
|
181 |
+
<tr>
|
182 |
+
<td colspan="19" align="left"><strong>Open Source</strong></td>
|
183 |
+
</tr>
|
184 |
+
<tr>
|
185 |
+
<td nowrap="nowrap" align="left">Cambrian-34B</td>
|
186 |
+
<td>34B</td>
|
187 |
+
<td><u>1820</u></td>
|
188 |
+
<td>58.3</td>
|
189 |
+
<td>591</td>
|
190 |
+
<td>50.3</td>
|
191 |
+
<td>75.6</td>
|
192 |
+
<td>53.2</td>
|
193 |
+
<td>54.2</td>
|
194 |
+
<td>2049.9</td>
|
195 |
+
<td>77.8</td>
|
196 |
+
<td>79.5</td>
|
197 |
+
<td>50.4</td>
|
198 |
+
<td>41.6</td>
|
199 |
+
<td>76.7</td>
|
200 |
+
<td>75.5</td>
|
201 |
+
<td>-</td>
|
202 |
+
<td>-</td>
|
203 |
+
<td>-</td>
|
204 |
+
</tr>
|
205 |
+
<tr>
|
206 |
+
<td nowrap="nowrap" align="left">GLM-4V-9B</td>
|
207 |
+
<td>13B</td>
|
208 |
+
<td>784</td>
|
209 |
+
<td>59.1</td>
|
210 |
+
<td>776</td>
|
211 |
+
<td>51.1</td>
|
212 |
+
<td>-</td>
|
213 |
+
<td>58.0</td>
|
214 |
+
<td>54.8</td>
|
215 |
+
<td>2018.8</td>
|
216 |
+
<td>67.9</td>
|
217 |
+
<td>71.2</td>
|
218 |
+
<td>46.9</td>
|
219 |
+
<td>45.0</td>
|
220 |
+
<td>-</td>
|
221 |
+
<td>-</td>
|
222 |
+
<td>-</td>
|
223 |
+
<td>-</td>
|
224 |
+
<td>-</td>
|
225 |
+
</tr>
|
226 |
+
<tr>
|
227 |
+
<td nowrap="nowrap" align="left">Pixtral-12B</td>
|
228 |
+
<td>12B</td>
|
229 |
+
<td>256</td>
|
230 |
+
<td>61.0</td>
|
231 |
+
<td>685</td>
|
232 |
+
<td>56.9</td>
|
233 |
+
<td>81.8</td>
|
234 |
+
<td>58.5</td>
|
235 |
+
<td>54.5</td>
|
236 |
+
<td>-</td>
|
237 |
+
<td>72.7</td>
|
238 |
+
<td>79.0</td>
|
239 |
+
<td>51.1</td>
|
240 |
+
<td>47.0</td>
|
241 |
+
<td>75.7</td>
|
242 |
+
<td>90.7</td>
|
243 |
+
<td>-</td>
|
244 |
+
<td>-</td>
|
245 |
+
<td>-</td>
|
246 |
+
</tr>
|
247 |
+
<tr>
|
248 |
+
<td nowrap="nowrap" align="left">DeepSeek-VL2-27B (4B)</td>
|
249 |
+
<td>27B</td>
|
250 |
+
<td>672</td>
|
251 |
+
<td>66.4</td>
|
252 |
+
<td>809</td>
|
253 |
+
<td>63.9</td>
|
254 |
+
<td>86.0</td>
|
255 |
+
<td>60.0</td>
|
256 |
+
<td>61.9</td>
|
257 |
+
<td>2253.0</td>
|
258 |
+
<td>81.2</td>
|
259 |
+
<td>83.8</td>
|
260 |
+
<td>54.0</td>
|
261 |
+
<td>45.3</td>
|
262 |
+
<td><u>84.2</u></td>
|
263 |
+
<td>93.3</td>
|
264 |
+
<td>-</td>
|
265 |
+
<td>-</td>
|
266 |
+
<td>3.0</td>
|
267 |
+
</tr>
|
268 |
+
<tr>
|
269 |
+
<td nowrap="nowrap" align="left">Qwen2-VL-7B</td>
|
270 |
+
<td>8B</td>
|
271 |
+
<td>784</td>
|
272 |
+
<td>67.1</td>
|
273 |
+
<td><u>866</u></td>
|
274 |
+
<td>58.2</td>
|
275 |
+
<td>83.0</td>
|
276 |
+
<td>62.0</td>
|
277 |
+
<td>60.7</td>
|
278 |
+
<td>2326.0</td>
|
279 |
+
<td>81.8</td>
|
280 |
+
<td>83.0</td>
|
281 |
+
<td>54.1</td>
|
282 |
+
<td>50.6</td>
|
283 |
+
<td><strong>84.3</strong></td>
|
284 |
+
<td><u>94.5</u></td>
|
285 |
+
<td>31.9</td>
|
286 |
+
<td>16.3</td>
|
287 |
+
<td>3.2</td>
|
288 |
+
</tr>
|
289 |
+
<tr>
|
290 |
+
<td nowrap="nowrap" align="left">LLaVA-OneVision-72B</td>
|
291 |
+
<td>72B</td>
|
292 |
+
<td>182</td>
|
293 |
+
<td>68.1</td>
|
294 |
+
<td>741</td>
|
295 |
+
<td>67.5</td>
|
296 |
+
<td>83.7</td>
|
297 |
+
<td>60.6</td>
|
298 |
+
<td><strong>65.8</strong></td>
|
299 |
+
<td>2261.0</td>
|
300 |
+
<td><strong>85.0</strong></td>
|
301 |
+
<td><u>85.6</u></td>
|
302 |
+
<td>56.8</td>
|
303 |
+
<td>49.0</td>
|
304 |
+
<td>80.5</td>
|
305 |
+
<td>91.3</td>
|
306 |
+
<td>39.1</td>
|
307 |
+
<td>-</td>
|
308 |
+
<td>3.5</td>
|
309 |
+
</tr>
|
310 |
+
<tr>
|
311 |
+
<td nowrap="nowrap" align="left">InternVL-2.5-8B</td>
|
312 |
+
<td>8B</td>
|
313 |
+
<td>706</td>
|
314 |
+
<td>68.3</td>
|
315 |
+
<td>822</td>
|
316 |
+
<td><u>64.4</u></td>
|
317 |
+
<td>84.8</td>
|
318 |
+
<td>62.8</td>
|
319 |
+
<td>62.8</td>
|
320 |
+
<td>2344.0</td>
|
321 |
+
<td><u>83.6</u></td>
|
322 |
+
<td>84.5</td>
|
323 |
+
<td>56.0</td>
|
324 |
+
<td>50.1</td>
|
325 |
+
<td>79.1</td>
|
326 |
+
<td>93.0</td>
|
327 |
+
<td>39.5</td>
|
328 |
+
<td>19.7</td>
|
329 |
+
<td>3.4</td>
|
330 |
+
</tr>
|
331 |
+
<tr>
|
332 |
+
<td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
|
333 |
+
<td>8B</td>
|
334 |
+
<td><strong>2822</strong></td>
|
335 |
+
<td>65.2</td>
|
336 |
+
<td>852*</td>
|
337 |
+
<td>60.6</td>
|
338 |
+
<td>79.4</td>
|
339 |
+
<td>60.0</td>
|
340 |
+
<td>57.5</td>
|
341 |
+
<td><u>2348.4*</u></td>
|
342 |
+
<td>78.0</td>
|
343 |
+
<td>82.1</td>
|
344 |
+
<td>49.8*</td>
|
345 |
+
<td>48.1*</td>
|
346 |
+
<td>80.1</td>
|
347 |
+
<td>90.8</td>
|
348 |
+
<td>25.7</td>
|
349 |
+
<td>18.3</td>
|
350 |
+
<td>3.6</td>
|
351 |
+
</tr>
|
352 |
+
<tr>
|
353 |
+
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
|
354 |
+
<td>8B</td>
|
355 |
+
<td><strong>2822</strong></td>
|
356 |
+
<td><strong>70.2</strong></td>
|
357 |
+
<td><strong>897*</strong></td>
|
358 |
+
<td><strong>71.9*</strong></td>
|
359 |
+
<td><u>86.9*</u></td>
|
360 |
+
<td><u>67.5</u></td>
|
361 |
+
<td><u>64.0</u></td>
|
362 |
+
<td><strong>2372.0*</strong></td>
|
363 |
+
<td>80.5</td>
|
364 |
+
<td><strong>85.8</strong></td>
|
365 |
+
<td>50.4*</td>
|
366 |
+
<td><u>51.9</u></td>
|
367 |
+
<td>82.0</td>
|
368 |
+
<td>93.5</td>
|
369 |
+
<td><u>41.4*</u></td>
|
370 |
+
<td><u>23.1*</u></td>
|
371 |
+
<td><strong>3.8</strong></td>
|
372 |
+
</tr>
|
373 |
+
</tbody>
|
374 |
+
</table>
|
375 |
+
</div>
|
376 |
+
* We evaluate this benchmark using chain-of-thought prompting. Specifically, for MME, we used this technique only for the Cognition set.
|
377 |
+
|
378 |
+
|
379 |
+
<sup>+</sup> Token Density: number of pixels encoded into each visual token at maximum resolution, i.e., # pixels at maximum resolution / # visual tokens.
|
380 |
+
|
381 |
+
Note: For proprietary models, we calculate token density based on the image encoding charging strategy defined in the official API documentation, which provides an upper-bound estimation.
|
382 |
+
|
383 |
+
|
384 |
+
**Multi-image and Video Understanding**
|
385 |
+
|
386 |
+
<div align="center">
|
387 |
+
|
388 |
+
<table style="margin: 0px auto;">
|
389 |
+
<thead>
|
390 |
+
<tr>
|
391 |
+
<th align="left">Model</th>
|
392 |
+
<th>Size</th>
|
393 |
+
<th>BLINK-val</th>
|
394 |
+
<th>Mantis-Eval</th>
|
395 |
+
<th>MIRB</th>
|
396 |
+
<th>Video-MME (wo / w subs)</th>
|
397 |
+
</tr>
|
398 |
+
</thead>
|
399 |
+
<tbody align="center">
|
400 |
+
<tr>
|
401 |
+
<td colspan="6" align="left"><strong>Proprietary</strong></td>
|
402 |
+
</tr>
|
403 |
+
<tr>
|
404 |
+
<td nowrap="nowrap" align="left">GPT-4o-20240513</td>
|
405 |
+
<td>-</td>
|
406 |
+
<td><strong>68</strong></td>
|
407 |
+
<td>-</td>
|
408 |
+
<td>-</td>
|
409 |
+
<td><strong>71.9/77.2<strong></td>
|
410 |
+
</tr>
|
411 |
+
<tr>
|
412 |
+
<td nowrap="nowrap" align="left">GPT4V</td>
|
413 |
+
<td>-</td>
|
414 |
+
<td>54.6</td>
|
415 |
+
<td>62.7</td>
|
416 |
+
<td>53.1</td>
|
417 |
+
<td>59.9/63.3</td>
|
418 |
+
</tr>
|
419 |
+
<tr>
|
420 |
+
<td colspan="6" align="left"><strong>Open-source</strong></td>
|
421 |
+
</tr>
|
422 |
+
<tr>
|
423 |
+
<td nowrap="nowrap" align="left">LLaVA-NeXT-Interleave 14B</td>
|
424 |
+
<td>14B</td>
|
425 |
+
<td>52.6</td>
|
426 |
+
<td>66.4</td>
|
427 |
+
<td>30.2</td>
|
428 |
+
<td>-</td>
|
429 |
+
</tr>
|
430 |
+
<tr>
|
431 |
+
<td nowrap="nowrap" align="left">LLaVA-One-Vision-72B</td>
|
432 |
+
<td>72B</td>
|
433 |
+
<td>55.4</td>
|
434 |
+
<td><strong>77.6</strong></td>
|
435 |
+
<td>-</td>
|
436 |
+
<td><u>66.2/69.5</u></td>
|
437 |
+
</tr>
|
438 |
+
<tr>
|
439 |
+
<td nowrap="nowrap" align="left">MANTIS 8B</td>
|
440 |
+
<td>8B</td>
|
441 |
+
<td>49.1</td>
|
442 |
+
<td>59.5</td>
|
443 |
+
<td>34.8</td>
|
444 |
+
<td>-</td>
|
445 |
+
</tr>
|
446 |
+
<tr>
|
447 |
+
<td nowrap="nowrap" align="left">Qwen2-VL-7B</td>
|
448 |
+
<td>8B</td>
|
449 |
+
<td>53.2</td>
|
450 |
+
<td>69.6*</td>
|
451 |
+
<td><strong>67.6*</strong></td>
|
452 |
+
<td>63.3/69.0</td>
|
453 |
+
</tr>
|
454 |
+
<tr>
|
455 |
+
<td nowrap="nowrap" align="left">InternVL-2.5-8B</td>
|
456 |
+
<td>8B</td>
|
457 |
+
<td>54.8</td>
|
458 |
+
<td>67.7</td>
|
459 |
+
<td>52.5</td>
|
460 |
+
<td>64.2/66.9</td>
|
461 |
+
</tr>
|
462 |
+
<tr>
|
463 |
+
<td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
|
464 |
+
<td>8B</td>
|
465 |
+
<td>53</td>
|
466 |
+
<td>69.1</td>
|
467 |
+
<td>53.8</td>
|
468 |
+
<td>60.9/63.6</td>
|
469 |
+
</tr>
|
470 |
+
<tr>
|
471 |
+
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
|
472 |
+
<td>8B</td>
|
473 |
+
<td><u>56.7</u></td>
|
474 |
+
<td><u>71.9</u></td>
|
475 |
+
<td><u>58.6</u></td>
|
476 |
+
<td>63.9/67.9</td>
|
477 |
+
</tr>
|
478 |
+
</tbody>
|
479 |
+
</table>
|
480 |
+
|
481 |
+
</div>
|
482 |
+
* We evaluate officially released checkpoints by ourselves.
|
483 |
+
|
484 |
+
</details>
|
485 |
+
|
486 |
+
|
487 |
+
<details>
|
488 |
+
<summary>Click to view audio understanding and speech conversation results.</summary>
|
489 |
+
|
490 |
+
**Audio Understanding**
|
491 |
+
|
492 |
+
<div align="center">
|
493 |
+
<table style="margin: 0px auto;">
|
494 |
+
<thead>
|
495 |
+
<tr>
|
496 |
+
<th align="left">Task</th>
|
497 |
+
<th>Size</th>
|
498 |
+
<th colspan="3">ASR (zh)</th>
|
499 |
+
<th colspan="3">ASR (en)</th>
|
500 |
+
<th colspan="2">ASR</th>
|
501 |
+
<th>Emotion</th>
|
502 |
+
</tr>
|
503 |
+
<tr>
|
504 |
+
<th align="left">Metric</th>
|
505 |
+
<td></td>
|
506 |
+
<th colspan="3">CER↓</th>
|
507 |
+
<th colspan="3">WER↓</th>
|
508 |
+
<th colspan="2">BLEU↑</th>
|
509 |
+
<th>ACC↑</th>
|
510 |
+
</tr>
|
511 |
+
<tr>
|
512 |
+
<th align="left">Dataset</th>
|
513 |
+
<td></td>
|
514 |
+
<th>AISHELL-1</th>
|
515 |
+
<th>Fleurs zh</th>
|
516 |
+
<th>WenetSpeech test-net</th>
|
517 |
+
<th>LibriSpeech test-clean</th>
|
518 |
+
<th>GigaSpeech</th>
|
519 |
+
<th>TED-LIUM</th>
|
520 |
+
<th>CoVoST en2zh</th>
|
521 |
+
<th>CoVoST zh2en</th>
|
522 |
+
<th>MELD emotion</th>
|
523 |
+
</tr>
|
524 |
+
</thead>
|
525 |
+
<tbody align="center">
|
526 |
+
<tr>
|
527 |
+
<td colspan="11" align="left"><strong>Proprietary</strong></td>
|
528 |
+
</tr>
|
529 |
+
<tr>
|
530 |
+
<td nowrap="nowrap" align="left">GPT-4o-Realtime</td>
|
531 |
+
<td>-</td>
|
532 |
+
<td>7.3*</td>
|
533 |
+
<td><u>5.4*</u></td>
|
534 |
+
<td>28.9*</td>
|
535 |
+
<td>2.6*</td>
|
536 |
+
<td>12.9*</td>
|
537 |
+
<td>4.8*</td>
|
538 |
+
<td>37.1*</td>
|
539 |
+
<td>15.7*</td>
|
540 |
+
<td>33.2*</td>
|
541 |
+
</tr>
|
542 |
+
<tr>
|
543 |
+
<td nowrap="nowrap" align="left">Gemini-1.5-Pro</td>
|
544 |
+
<td>-</td>
|
545 |
+
<td>4.5*</td>
|
546 |
+
<td>5.9*</td>
|
547 |
+
<td>14.3*</td>
|
548 |
+
<td>2.9*</td>
|
549 |
+
<td>10.6*</td>
|
550 |
+
<td><strong>3.0*</strong></td>
|
551 |
+
<td><u>47.3*</u></td>
|
552 |
+
<td>22.6*</td>
|
553 |
+
<td>48.4*</td>
|
554 |
+
</tr>
|
555 |
+
<tr>
|
556 |
+
<td colspan="11" align="left"><strong>Open-Source</strong></td>
|
557 |
+
</tr>
|
558 |
+
<tr>
|
559 |
+
<td nowrap="nowrap" align="left">Qwen2-Audio</td>
|
560 |
+
<td>8B</td>
|
561 |
+
<td>-</td>
|
562 |
+
<td>7.5</td>
|
563 |
+
<td>-</td>
|
564 |
+
<td><strong>1.6</strong></td>
|
565 |
+
<td>-</td>
|
566 |
+
<td>-</td>
|
567 |
+
<td>45.2</td>
|
568 |
+
<td><u>24.4</u></td>
|
569 |
+
<td><strong>55.3</strong></td>
|
570 |
+
</tr>
|
571 |
+
<tr>
|
572 |
+
<td nowrap="nowrap" align="left">Qwen2-Audio-Instruction</td>
|
573 |
+
<td>8B</td>
|
574 |
+
<td>2.6*</td>
|
575 |
+
<td>6.9*</td>
|
576 |
+
<td><u>10.3*</u></td>
|
577 |
+
<td>3.1*</td>
|
578 |
+
<td><u>9.7</u>*</td>
|
579 |
+
<td>5.9*</td>
|
580 |
+
<td>39.5*</td>
|
581 |
+
<td>22.9*</td>
|
582 |
+
<td>17.4*</td>
|
583 |
+
</tr>
|
584 |
+
<tr>
|
585 |
+
<td nowrap="nowrap" align="left">GLM-4-Voice-Base</td>
|
586 |
+
<td>9B</td>
|
587 |
+
<td><u>2.5</u></td>
|
588 |
+
<td>-</td>
|
589 |
+
<td>-</td>
|
590 |
+
<td>2.8</td>
|
591 |
+
<td>-</td>
|
592 |
+
<td>-</td>
|
593 |
+
<td>-</td>
|
594 |
+
<td>-</td>
|
595 |
+
</tr>
|
596 |
+
<tr style="background-color: #e6f2ff;">
|
597 |
+
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
|
598 |
+
<td>8B</td>
|
599 |
+
<td><strong>1.6</strong></td>
|
600 |
+
<td><strong>4.4</strong></td>
|
601 |
+
<td><strong>6.9</strong></td>
|
602 |
+
<td><u>1.7</u></td>
|
603 |
+
<td><strong>8.7</strong></td>
|
604 |
+
<td><strong>3.0</strong></td>
|
605 |
+
<td><strong>48.2</strong></td>
|
606 |
+
<td><strong>27.2</strong></td>
|
607 |
+
<td><u>52.4</u></td>
|
608 |
+
</tr>
|
609 |
+
</tbody>
|
610 |
+
</table>
|
611 |
+
</div>
|
612 |
+
* We evaluate officially released checkpoints by ourselves.<br><br>
|
613 |
+
|
614 |
+
**Speech Generation**
|
615 |
+
|
616 |
+
<div align="center">
|
617 |
+
<table style="margin: 0px auto;">
|
618 |
+
<thead>
|
619 |
+
<tr>
|
620 |
+
<th align="left">Task</th>
|
621 |
+
<th>Size</th>
|
622 |
+
<th colspan="9">SpeechQA</th>
|
623 |
+
</tr>
|
624 |
+
<tr>
|
625 |
+
<th align="left">Metric</th>
|
626 |
+
<th></th>
|
627 |
+
<th colspan="3">ACC↑</th>
|
628 |
+
<th>G-Eval (10 point)↑</th>
|
629 |
+
<th>Semantic ELO score↑</th>
|
630 |
+
<th>Acoustic ELO score↑</th>
|
631 |
+
<th>Overall ELO score↑</th>
|
632 |
+
<th>UTMOS↑</th>
|
633 |
+
<th>ASR-WER↓</th>
|
634 |
+
</tr>
|
635 |
+
<tr>
|
636 |
+
<th align="left">Dataset</th>
|
637 |
+
<th></th>
|
638 |
+
<th>Speech Llama Q.</th>
|
639 |
+
<th>Speech Web Q.</th>
|
640 |
+
<th>Speech Trivia QA</th>
|
641 |
+
<th>Speech AlpacaEval</th>
|
642 |
+
<th colspan="5">AudioArena</th>
|
643 |
+
</tr>
|
644 |
+
</thead>
|
645 |
+
<tbody align="center">
|
646 |
+
<tr>
|
647 |
+
<td colspan="11" align="left"><strong>Proprietary</strong></td>
|
648 |
+
</tr>
|
649 |
+
<tr>
|
650 |
+
<td nowrap="nowrap" align="left">GPT-4o-Realtime</td>
|
651 |
+
<td></td>
|
652 |
+
<td><strong>71.7</strong></td>
|
653 |
+
<td><strong>51.6</strong></td>
|
654 |
+
<td><strong>69.7</strong></td>
|
655 |
+
<td><strong>7.4</strong></td>
|
656 |
+
<td><strong>1157</strong></td>
|
657 |
+
<td><strong>1203</strong></td>
|
658 |
+
<td><strong>1200</strong></td>
|
659 |
+
<td><strong>4.2</strong></td>
|
660 |
+
<td><strong>2.3</strong></td>
|
661 |
+
</tr>
|
662 |
+
<tr>
|
663 |
+
<td colspan="11" align="left"><strong>Open-Source</strong></td>
|
664 |
+
</tr>
|
665 |
+
<tr>
|
666 |
+
<td nowrap="nowrap" align="left">GLM-4-Voice</td>
|
667 |
+
<td>9B</td>
|
668 |
+
<td>50.0</td>
|
669 |
+
<td>32.0</td>
|
670 |
+
<td>36.4</td>
|
671 |
+
<td><u>5.1</u></td>
|
672 |
+
<td>999</td>
|
673 |
+
<td>1147</td>
|
674 |
+
<td>1035</td>
|
675 |
+
<td><u>4.1</u></td>
|
676 |
+
<td><u>11.7</u></td>
|
677 |
+
</tr>
|
678 |
+
<tr>
|
679 |
+
<td nowrap="nowrap" align="left">Llama-Omni</td>
|
680 |
+
<td>8B</td>
|
681 |
+
<td>45.3</td>
|
682 |
+
<td>22.9</td>
|
683 |
+
<td>10.7</td>
|
684 |
+
<td>3.9</td>
|
685 |
+
<td>960</td>
|
686 |
+
<td>878</td>
|
687 |
+
<td>897</td>
|
688 |
+
<td>3.2</td>
|
689 |
+
<td>24.3</td>
|
690 |
+
</tr>
|
691 |
+
<tr>
|
692 |
+
<td nowrap="nowrap" align="left">Moshi</td>
|
693 |
+
<td>7B</td>
|
694 |
+
<td>43.7</td>
|
695 |
+
<td>23.8</td>
|
696 |
+
<td>16.7</td>
|
697 |
+
<td>2.4</td>
|
698 |
+
<td>871</td>
|
699 |
+
<td>808</td>
|
700 |
+
<td>875</td>
|
701 |
+
<td>2.8</td>
|
702 |
+
<td>8.2</td>
|
703 |
+
</tr>
|
704 |
+
<tr>
|
705 |
+
<td nowrap="nowrap" align="left">Mini-Omni</td>
|
706 |
+
<td>1B</td>
|
707 |
+
<td>22.0</td>
|
708 |
+
<td>12.8</td>
|
709 |
+
<td>6.9</td>
|
710 |
+
<td>2.5</td>
|
711 |
+
<td>926</td>
|
712 |
+
<td>803</td>
|
713 |
+
<td>865</td>
|
714 |
+
<td>3.4</td>
|
715 |
+
<td>10.0</td>
|
716 |
+
</tr>
|
717 |
+
<tr style="background-color: #e6f2ff;">
|
718 |
+
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
|
719 |
+
<td>8B</td>
|
720 |
+
<td><u>61.0</u></td>
|
721 |
+
<td><u>40.0</u></td>
|
722 |
+
<td><u>40.2</u></td>
|
723 |
+
<td><u>5.1</u></td>
|
724 |
+
<td><u>1088</u></td>
|
725 |
+
<td><u>1163</u></td>
|
726 |
+
<td><u>1131</u></td>
|
727 |
+
<td><strong>4.2</strong></td>
|
728 |
+
<td>9.8</td>
|
729 |
+
</tr>
|
730 |
+
</tbody>
|
731 |
+
</table>
|
732 |
+
</div>
|
733 |
+
All results are from AudioEvals, and the evaluation methods along with further details can be found in <a href="https://github.com/OpenBMB/UltraEval-Audio" target="_blank">AudioEvals</a>.<br><br>
|
734 |
+
|
735 |
+
**Voice Cloning**
|
736 |
+
|
737 |
+
<div align="center">
|
738 |
+
<table style="margin: 0px auto;">
|
739 |
+
<thead>
|
740 |
+
<tr>
|
741 |
+
<th align="left">Task</th>
|
742 |
+
<th colspan="2">Voice cloning</th>
|
743 |
+
</tr>
|
744 |
+
<tr>
|
745 |
+
<th align="left">Metric</th>
|
746 |
+
<th>SIMO↑</th>
|
747 |
+
<th>SIMO↑</th>
|
748 |
+
</tr>
|
749 |
+
<tr>
|
750 |
+
<th align="left">Dataset</th>
|
751 |
+
<th>Seed-TTS test-zh</th>
|
752 |
+
<th>Seed-TTS test-en</th>
|
753 |
+
</tr>
|
754 |
+
</thead>
|
755 |
+
<tbody align="center">
|
756 |
+
<tr>
|
757 |
+
<td nowrap="nowrap" align="left">F5-TTS</td>
|
758 |
+
<td><strong>76</strong></td>
|
759 |
+
<td><strong>67</strong></td>
|
760 |
+
</tr>
|
761 |
+
<tr>
|
762 |
+
<td nowrap="nowrap" align="left">CosyVoice</td>
|
763 |
+
<td><u>75</u></td>
|
764 |
+
<td><u>64</u></td>
|
765 |
+
</tr>
|
766 |
+
<tr>
|
767 |
+
<td nowrap="nowrap" align="left">FireRedTTS</td>
|
768 |
+
<td>63</td>
|
769 |
+
<td>46</td>
|
770 |
+
</tr>
|
771 |
+
<tr style="background-color: #e6f2ff;">
|
772 |
+
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
|
773 |
+
<td>57</td>
|
774 |
+
<td>47</td>
|
775 |
+
</tr>
|
776 |
+
</tbody>
|
777 |
+
</table>
|
778 |
+
</div>
|
779 |
+
Note: Mimick Task: Takes audio input, and outputs both an ASR transcription and a voice imitation (TTS)
|
780 |
+
|
781 |
+
</details>
|
782 |
+
|
783 |
+
<details>
|
784 |
+
<summary>Click to view multimodal live streaming results.</summary>
|
785 |
+
|
786 |
+
**Multimodal Live Streaming**: results on StreamingBench
|
787 |
+
|
788 |
+
<table style="margin: 0px auto;">
|
789 |
+
<thead>
|
790 |
+
<tr>
|
791 |
+
<th align="left">Model</th>
|
792 |
+
<th>Size</th>
|
793 |
+
<th>Real-Time Video Understanding</th>
|
794 |
+
<th>Omni-Source Understanding</th>
|
795 |
+
<th>Contextual Understanding</th>
|
796 |
+
<th>Overall</th>
|
797 |
+
</tr>
|
798 |
+
</thead>
|
799 |
+
<tbody align="center">
|
800 |
+
<tr>
|
801 |
+
<td colspan="7" align="left"><strong>Proprietary</strong></td>
|
802 |
+
</tr>
|
803 |
+
<tr>
|
804 |
+
<td nowrap="nowrap" align="left">Gemini 1.5 Pro</td>
|
805 |
+
<td>-</td>
|
806 |
+
<td><u>77.4</u></td>
|
807 |
+
<td><strong>67.8</strong></td>
|
808 |
+
<td><strong>51.1</strong></td>
|
809 |
+
<td><strong>70.3</strong></td>
|
810 |
+
</tr>
|
811 |
+
<tr>
|
812 |
+
<td nowrap="nowrap" align="left">GPT-4o</td>
|
813 |
+
<td>-</td>
|
814 |
+
<td>74.5</td>
|
815 |
+
<td>51.0</td>
|
816 |
+
<td><u>48.0</u></td>
|
817 |
+
<td>64.1</td>
|
818 |
+
</tr>
|
819 |
+
<tr>
|
820 |
+
<td nowrap="nowrap" align="left">Claude-3.5-Sonnet</td>
|
821 |
+
<td>-</td>
|
822 |
+
<td>74.0</td>
|
823 |
+
<td>41.4</td>
|
824 |
+
<td>37.8</td>
|
825 |
+
<td>59.7</td>
|
826 |
+
</tr>
|
827 |
+
<tr>
|
828 |
+
<td colspan="9" align="left"><strong>Open-source</strong></td>
|
829 |
+
</tr>
|
830 |
+
<tr>
|
831 |
+
<td nowrap="nowrap" align="left">VILA-1.5</td>
|
832 |
+
<td>8B</td>
|
833 |
+
<td>61.5</td>
|
834 |
+
<td>37.5</td>
|
835 |
+
<td>26.7</td>
|
836 |
+
<td>49.5</td>
|
837 |
+
</tr>
|
838 |
+
<tr>
|
839 |
+
<td nowrap="nowrap" align="left">LongVA</td>
|
840 |
+
<td>7B</td>
|
841 |
+
<td>63.1</td>
|
842 |
+
<td>35.9</td>
|
843 |
+
<td>30.2</td>
|
844 |
+
<td>50.7</td>
|
845 |
+
</tr>
|
846 |
+
<tr>
|
847 |
+
<td nowrap="nowrap" align="left">LLaVA-Next-Video-34B</td>
|
848 |
+
<td>34B</td>
|
849 |
+
<td>69.8</td>
|
850 |
+
<td>41.7</td>
|
851 |
+
<td>34.3</td>
|
852 |
+
<td>56.7</td>
|
853 |
+
</tr>
|
854 |
+
<tr>
|
855 |
+
<td nowrap="nowrap" align="left">Qwen2-VL-7B</td>
|
856 |
+
<td>8B</td>
|
857 |
+
<td>71.2</td>
|
858 |
+
<td>40.7</td>
|
859 |
+
<td>33.1</td>
|
860 |
+
<td>57.0</td>
|
861 |
+
</tr>
|
862 |
+
<tr>
|
863 |
+
<td nowrap="nowrap" align="left">InternVL2-8B</td>
|
864 |
+
<td>8B</td>
|
865 |
+
<td>70.1</td>
|
866 |
+
<td>42.7</td>
|
867 |
+
<td>34.1</td>
|
868 |
+
<td>57.0</td>
|
869 |
+
</tr>
|
870 |
+
<tr>
|
871 |
+
<td nowrap="nowrap" align="left">VITA-1.5</td>
|
872 |
+
<td>8B</td>
|
873 |
+
<td>70.9</td>
|
874 |
+
<td>40.8</td>
|
875 |
+
<td>35.8</td>
|
876 |
+
<td>57.4</td>
|
877 |
+
</tr>
|
878 |
+
<tr>
|
879 |
+
<td nowrap="nowrap" align="left">LLaVA-OneVision-7B</td>
|
880 |
+
<td>8B</td>
|
881 |
+
<td>74.3</td>
|
882 |
+
<td>40.8</td>
|
883 |
+
<td>31.0</td>
|
884 |
+
<td>58.4</td>
|
885 |
+
</tr>
|
886 |
+
<tr>
|
887 |
+
<td nowrap="nowrap" align="left">InternLM-XC2.5-OL-7B</td>
|
888 |
+
<td>8B</td>
|
889 |
+
<td>75.4</td>
|
890 |
+
<td>46.2</td>
|
891 |
+
<td>33.6</td>
|
892 |
+
<td>60.8</td>
|
893 |
+
</tr>
|
894 |
+
<tr>
|
895 |
+
<td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
|
896 |
+
<td>8B</td>
|
897 |
+
<td>72.4</td>
|
898 |
+
<td>40.2</td>
|
899 |
+
<td>33.4</td>
|
900 |
+
<td>57.7</td>
|
901 |
+
</tr>
|
902 |
+
<tr style="background-color: #e6f2ff;">
|
903 |
+
<td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
|
904 |
+
<td>8B</td>
|
905 |
+
<td><strong>79.9</strong></td>
|
906 |
+
<td><u>53.4</u></td>
|
907 |
+
<td>38.5</td>
|
908 |
+
<td><u>66.0</u></td>
|
909 |
+
</tr>
|
910 |
+
</tbody>
|
911 |
+
</table>
|
912 |
+
|
913 |
+
</details>
|
914 |
+
|
915 |
+
|
916 |
+
### Examples <!-- omit in toc -->
|
917 |
+
|
918 |
+
We deploy MiniCPM-o 2.6 on end devices. The demo video is the raw screen recording on a iPad Pro without edition.
|
919 |
+
|
920 |
+
|
921 |
+
<div style="display: flex; flex-direction: column; align-items: center;">
|
922 |
+
<img src="https://github.com/yiranyyu/MiniCPM-V-private/blob/main/assets/minicpmo2_6/minicpmo2_6_math_intersect.png" alt="math" style="margin-bottom: 5px;">
|
923 |
+
<img src="https://github.com/yiranyyu/MiniCPM-V-private/blob/main/assets/minicpmo2_6/minicpmo2_6_diagram_train_NN.png" alt="diagram" style="margin-bottom: 5px;">
|
924 |
+
<img src="https://github.com/yiranyyu/MiniCPM-V-private/blob/main/assets/minicpmo2_6/minicpmo2_6_multi-image_bike.png" alt="bike" style="margin-bottom: 5px;">
|
925 |
+
</div>
|
926 |
+
|
927 |
+
|
928 |
+
|
929 |
+
|
930 |
+
## Online Demo
|
931 |
+
Click here to try the online demo of **MiniCPM-o 2.6** on [CN](https://minicpm-omni-webdemo.modelbest.cn/) server and [US](https://minicpm-omni-webdemo-us.modelbest.cn) server.
|
932 |
+
|
933 |
+
|
934 |
+
## Usage
|
935 |
+
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
|
936 |
+
```
|
937 |
+
Pillow==10.1.0
|
938 |
+
torch==2.2.0
|
939 |
+
torchaudio==2.2.0
|
940 |
+
torchvision==0.17.0
|
941 |
+
transformers==4.44.2
|
942 |
+
librosa==0.9.0
|
943 |
+
soundfile==0.12.1
|
944 |
+
vector-quantize-pytorch==1.18.5
|
945 |
+
vocos==0.1.0
|
946 |
+
decord
|
947 |
+
moviepy
|
948 |
+
```
|
949 |
+
|
950 |
+
|
951 |
+
### Model initialization
|
952 |
+
```python
|
953 |
+
|
954 |
+
import torch
|
955 |
+
from PIL import Image
|
956 |
+
from transformers import AutoModel, AutoTokenizer
|
957 |
+
|
958 |
+
# load omni model default, the default init_vision/init_audio/init_tts is True
|
959 |
+
# if load vision-only model, please set init_audio=False and init_tts=False
|
960 |
+
# if load audio-only model, please set init_vision=False
|
961 |
+
model = AutoModel.from_pretrained(
|
962 |
+
'openbmb/MiniCPM-o-2_6',
|
963 |
+
trust_remote_code=True,
|
964 |
+
attn_implementation='sdpa', # sdpa or flash_attention_2
|
965 |
+
torch_dtype=torch.bfloat16,
|
966 |
+
init_vision=True,
|
967 |
+
init_audio=True,
|
968 |
+
init_tts=True
|
969 |
+
)
|
970 |
+
|
971 |
+
|
972 |
+
model = model.eval().cuda()
|
973 |
+
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-o-2_6', trust_remote_code=True)
|
974 |
+
|
975 |
+
# In addition to vision-only mode, tts processor and vocos also needs to be initialized
|
976 |
+
model.init_tts()
|
977 |
+
model.tts.float()
|
978 |
+
```
|
979 |
+
### Omni mode
|
980 |
+
we provide two inference modes: chat and streaming
|
981 |
+
|
982 |
+
#### chat inference
|
983 |
+
```python
|
984 |
+
import math
|
985 |
+
import numpy as np
|
986 |
+
from PIL import Image
|
987 |
+
from moviepy.editor import VideoFileClip
|
988 |
+
import tempfile
|
989 |
+
import librosa
|
990 |
+
import soundfile as sf
|
991 |
+
|
992 |
+
def get_video_chunk_content(video_path, flatten=True):
|
993 |
+
video = VideoFileClip(video_path)
|
994 |
+
print('video_duration:', video.duration)
|
995 |
+
|
996 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file:
|
997 |
+
temp_audio_file_path = temp_audio_file.name
|
998 |
+
video.audio.write_audiofile(temp_audio_file_path, codec="pcm_s16le", fps=16000)
|
999 |
+
audio_np, sr = librosa.load(temp_audio_file_path, sr=16000, mono=True)
|
1000 |
+
num_units = math.ceil(video.duration)
|
1001 |
+
|
1002 |
+
# 1 frame + 1s audio chunk
|
1003 |
+
contents= []
|
1004 |
+
for i in range(num_units):
|
1005 |
+
frame = video.get_frame(i+1)
|
1006 |
+
image = Image.fromarray((frame).astype(np.uint8))
|
1007 |
+
audio = audio_np[sr*i:sr*(i+1)]
|
1008 |
+
if flatten:
|
1009 |
+
contents.extend(["<unit>", image, audio])
|
1010 |
+
else:
|
1011 |
+
contents.append(["<unit>", image, audio])
|
1012 |
+
|
1013 |
+
return contents
|
1014 |
+
|
1015 |
+
video_path="/path/to/video"
|
1016 |
+
sys_msg = model.get_sys_prompt(mode='omni', language='en')
|
1017 |
+
# if use voice clone prompt, please set ref_audio
|
1018 |
+
# ref_audio_path = '/path/to/ref_audio'
|
1019 |
+
# ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)
|
1020 |
+
# sys_msg = model.get_sys_prompt(ref_audio=ref_audio, mode='omni', language='en')
|
1021 |
+
|
1022 |
+
contents = get_video_chunk_content(video_path)
|
1023 |
+
msg = {"role":"user", "content": contents}
|
1024 |
+
msgs = [sys_msg, msg]
|
1025 |
+
|
1026 |
+
# please set generate_audio=True and output_audio_path to save the tts result
|
1027 |
+
generate_audio = True
|
1028 |
+
output_audio_path = 'output.wav'
|
1029 |
+
|
1030 |
+
res = model.chat(
|
1031 |
+
msgs=msgs,
|
1032 |
+
tokenizer=tokenizer,
|
1033 |
+
sampling=True,
|
1034 |
+
temperature=0.5,
|
1035 |
+
max_new_tokens=4096,
|
1036 |
+
omni_input=True, # please set omni_input=True when omni inference
|
1037 |
+
use_tts_template=True,
|
1038 |
+
generate_audio=generate_audio,
|
1039 |
+
output_audio_path=output_audio_path,
|
1040 |
+
max_slice_nums=1,
|
1041 |
+
use_image_id=False,
|
1042 |
+
return_dict=True
|
1043 |
+
)
|
1044 |
+
print(res)
|
1045 |
+
```
|
1046 |
+
#### streaming inference
|
1047 |
+
```python
|
1048 |
+
# a new conversation need reset session first, it will reset the kv-cache
|
1049 |
+
model.reset_session()
|
1050 |
+
|
1051 |
+
contents = get_video_chunk_content(video_path, flatten=False)
|
1052 |
+
session_id = '123'
|
1053 |
+
generate_audio = True
|
1054 |
+
|
1055 |
+
# 1. prefill system prompt
|
1056 |
+
res = model.streaming_prefill(
|
1057 |
+
session_id=session_id,
|
1058 |
+
msgs=[sys_msg],
|
1059 |
+
tokenizer=tokenizer
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
# 2. prefill video/audio chunks
|
1063 |
+
for content in contents:
|
1064 |
+
msgs = [{"role":"user", "content": content}]
|
1065 |
+
res = model.streaming_prefill(
|
1066 |
+
session_id=session_id,
|
1067 |
+
msgs=msgs,
|
1068 |
+
tokenizer=tokenizer
|
1069 |
+
)
|
1070 |
+
|
1071 |
+
# 3. generate
|
1072 |
+
res = model.streaming_generate(
|
1073 |
+
session_id=session_id,
|
1074 |
+
tokenizer=tokenizer,
|
1075 |
+
temperature=0.5,
|
1076 |
+
generate_audio=generate_audio
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
audios = []
|
1080 |
+
text = ""
|
1081 |
+
|
1082 |
+
if generate_audio:
|
1083 |
+
for r in res:
|
1084 |
+
audio_wav = r.audio_wav
|
1085 |
+
sampling_rate = r.sampling_rate
|
1086 |
+
txt = r.text
|
1087 |
+
|
1088 |
+
audios.append(audio_wav)
|
1089 |
+
text += txt
|
1090 |
+
|
1091 |
+
res = np.concatenate(audios)
|
1092 |
+
sf.write("output.wav", res, samplerate=sampling_rate)
|
1093 |
+
print("text:", text)
|
1094 |
+
print("audio saved to output.wav")
|
1095 |
+
else:
|
1096 |
+
for r in res:
|
1097 |
+
text += r['text']
|
1098 |
+
print("text:", text)
|
1099 |
+
|
1100 |
+
```
|
1101 |
+
|
1102 |
+
### Audio-Only mode
|
1103 |
+
#### Mimick
|
1104 |
+
```python
|
1105 |
+
mimick_prompt = "Please repeat each user's speech, including voice style and speech content."
|
1106 |
+
audio_input, _ = librosa.load('xxx.wav', sr=16000, mono=True)
|
1107 |
+
msgs = [{'role': 'user', 'content': [mimick_prompt,audio_input]}]
|
1108 |
+
|
1109 |
+
res = model.chat(
|
1110 |
+
msgs=msgs,
|
1111 |
+
tokenizer=tokenizer,
|
1112 |
+
sampling=True,
|
1113 |
+
max_new_tokens=128,
|
1114 |
+
use_tts_template=True,
|
1115 |
+
temperature=0.3,
|
1116 |
+
generate_audio=True,
|
1117 |
+
output_audio_path='output.wav', # save the tts result to output_audio_path
|
1118 |
+
)
|
1119 |
+
```
|
1120 |
+
|
1121 |
+
#### General Speech Conversation with Configurable Voices
|
1122 |
+
<details> <summary>Click to view the Python code for enabling MiniCPM-o 2.6 to interact with you in a specified voice.</summary>
|
1123 |
+
|
1124 |
+
```python
|
1125 |
+
ref_audio, _ = librosa.load('./assert/voice_01.wav', sr=16000, mono=True) # load the reference audio
|
1126 |
+
|
1127 |
+
# Audio RolePlay: # With this mode, model will role-play the character based on the audio prompt.
|
1128 |
+
sys_prompt = model.get_sys_prompt(ref_audio=ref_audio, mode='audio_roleplay', language='en')
|
1129 |
+
user_question = {'role': 'user', 'content': [librosa.load('xxx.wav', sr=16000, mono=True)[0]]}
|
1130 |
+
|
1131 |
+
# Audio Assistant: # With this mode, model will speak with the voice in ref_audio as a AI assistant.
|
1132 |
+
# sys_prompt = model.get_sys_prompt(ref_audio=ref_audio, mode='audio_assistant', language='en')
|
1133 |
+
# user_question = {'role': 'user', 'content': [librosa.load('xxx.wav', sr=16000, mono=True)[0]]} # Try to ask something!
|
1134 |
+
```
|
1135 |
+
```python
|
1136 |
+
msgs = [sys_prompt, user_question]
|
1137 |
+
res = model.chat(
|
1138 |
+
image=None,
|
1139 |
+
msgs=msgs,
|
1140 |
+
context=None,
|
1141 |
+
tokenizer=tokenizer,
|
1142 |
+
sampling=True,
|
1143 |
+
max_new_tokens=128,
|
1144 |
+
stream=False,
|
1145 |
+
stream_input=True,
|
1146 |
+
use_tts_template=True,
|
1147 |
+
generate_audio=True,
|
1148 |
+
temperature=0.3,
|
1149 |
+
output_audio_path='result.wav',
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
# round two
|
1153 |
+
history = msgs.append({'role': 'assistant', 'content': res})
|
1154 |
+
user_question = {'role': 'user', 'content': [librosa.load('xxx.wav', sr=16000, mono=True)[0]]}
|
1155 |
+
msgs = history.append(user_question)
|
1156 |
+
res = model.chat(
|
1157 |
+
image=None,
|
1158 |
+
msgs=msgs,
|
1159 |
+
context=None,
|
1160 |
+
tokenizer=tokenizer,
|
1161 |
+
sampling=True,
|
1162 |
+
max_new_tokens=128,
|
1163 |
+
stream=False,
|
1164 |
+
stream_input=True,
|
1165 |
+
use_tts_template=True,
|
1166 |
+
generate_audio=True,
|
1167 |
+
temperature=0.3,
|
1168 |
+
output_audio_path='result_round_2.wav',
|
1169 |
+
)
|
1170 |
+
print(res)
|
1171 |
+
```
|
1172 |
+
|
1173 |
+
</details>
|
1174 |
+
|
1175 |
+
#### Addressing various audio tasks
|
1176 |
+
<details>
|
1177 |
+
<summary> Click to show Python code running MiniCPM-o 2.6 with specific audioQA task. </summary>
|
1178 |
+
|
1179 |
+
```python
|
1180 |
+
'''
|
1181 |
+
Audio Understanding Task Prompt:
|
1182 |
+
Speech:
|
1183 |
+
ASR with ZH(same as AST en2zh): 请仔细听这段音频片段,并将其内容逐字记录。
|
1184 |
+
ASR with EN(same as AST zh2en): Please listen to the audio snippet carefully and transcribe the content.
|
1185 |
+
Speaker Analysis: Based on the speaker's content, speculate on their gender, condition, age range, and health status.
|
1186 |
+
General Audio:
|
1187 |
+
Audio Caption: Summarize the main content of the audio.
|
1188 |
+
Sound Scene Tagging: Utilize one keyword to convey the audio's content or the associated scene.
|
1189 |
+
'''
|
1190 |
+
task_prompt = "\n"
|
1191 |
+
audio_input, _ = librosa.load('xxx.wav', sr=16000, mono=True)
|
1192 |
+
|
1193 |
+
msgs = [{'role': 'user', 'content': [task_prompt,audio_input]}]
|
1194 |
+
|
1195 |
+
res = model.chat(
|
1196 |
+
image=None,
|
1197 |
+
msgs=msgs,
|
1198 |
+
context=None,
|
1199 |
+
tokenizer=tokenizer,
|
1200 |
+
sampling=True,
|
1201 |
+
max_new_tokens=128,
|
1202 |
+
stream=False,
|
1203 |
+
stream_input=True,
|
1204 |
+
use_tts_template=True,
|
1205 |
+
generate_audio=True,
|
1206 |
+
temperature=0.3,
|
1207 |
+
output_audio_path='result.wav',
|
1208 |
+
)
|
1209 |
+
print(res)
|
1210 |
+
```
|
1211 |
+
```python
|
1212 |
+
'''
|
1213 |
+
Speech Generation Task Prompt:
|
1214 |
+
Human Instruction-to-Speech: see https://voxinstruct.github.io/VoxInstruct/
|
1215 |
+
Example:
|
1216 |
+
# 在新闻中,一个年轻男性兴致勃勃地说:“祝福亲爱的祖国母亲美丽富强!”他用低音调和低音量,慢慢地说出了这句话。
|
1217 |
+
# Delighting in a surprised tone, an adult male with low pitch and low volume comments:"One even gave my little dog a biscuit" This dialogue takes place at a leisurely pace, delivering a sense of excitement and surprise in the context.
|
1218 |
+
|
1219 |
+
Voice Cloning or Voice Creation: With this mode, model will act like a TTS model.
|
1220 |
+
'''
|
1221 |
+
# Human Instruction-to-Speech:
|
1222 |
+
task_prompt = '' #Try to make some Human Instruction-to-Speech prompt
|
1223 |
+
msgs = [{'role': 'user', 'content': [task_prompt]}] # you can try to use the same audio question
|
1224 |
+
|
1225 |
+
# Voice Cloning mode: With this mode, model will act like a TTS model.
|
1226 |
+
# sys_prompt = model.get_sys_prompt(ref_audio=ref_audio, mode='voice_cloning', language='en')
|
1227 |
+
# text_prompt = f"Please read the text below."
|
1228 |
+
# user_question = {'role': 'user', 'content': [text_prompt, "content that you want to read"]} # using same voice in sys_prompt to read the text. (Voice Cloning)
|
1229 |
+
# user_question = {'role': 'user', 'content': [text_prompt, librosa.load('xxx.wav', sr=16000, mono=True)[0]]} # using same voice in sys_prompt to read 'xxx.wav'. (Voice Creation)
|
1230 |
+
|
1231 |
+
msgs = [sys_prompt, user_question]
|
1232 |
+
res = model.chat(
|
1233 |
+
image=None,
|
1234 |
+
msgs=msgs,
|
1235 |
+
context=None,
|
1236 |
+
tokenizer=tokenizer,
|
1237 |
+
sampling=True,
|
1238 |
+
max_new_tokens=128,
|
1239 |
+
stream=False,
|
1240 |
+
stream_input=True,
|
1241 |
+
use_tts_template=True,
|
1242 |
+
generate_audio=True,
|
1243 |
+
temperature=0.3,
|
1244 |
+
output_audio_path='result.wav',
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
|
1248 |
+
```
|
1249 |
+
|
1250 |
+
</details>
|
1251 |
+
|
1252 |
+
### Vision-Only mode
|
1253 |
+
|
1254 |
+
`MiniCPM-o-2_6` has the same inference methods as `MiniCPM-V-2_6`
|
1255 |
+
|
1256 |
+
#### chat with single image
|
1257 |
+
```python
|
1258 |
+
# test.py
|
1259 |
+
image = Image.open('xx.jpg').convert('RGB')
|
1260 |
+
question = 'What is in the image?'
|
1261 |
+
msgs = [{'role': 'user', 'content': [image, question]}]
|
1262 |
+
res = model.chat(
|
1263 |
+
image=None,
|
1264 |
+
msgs=msgs,
|
1265 |
+
tokenizer=tokenizer
|
1266 |
+
)
|
1267 |
+
print(res)
|
1268 |
+
|
1269 |
+
## if you want to use streaming, please make sure sampling=True and stream=True
|
1270 |
+
## the model.chat will return a generator
|
1271 |
+
res = model.chat(
|
1272 |
+
msgs=msgs,
|
1273 |
+
tokenizer=tokenizer,
|
1274 |
+
sampling=True,
|
1275 |
+
stream=True
|
1276 |
+
)
|
1277 |
+
generated_text = ""
|
1278 |
+
for new_text in res:
|
1279 |
+
generated_text += new_text
|
1280 |
+
print(new_text, flush=True, end='')
|
1281 |
+
```
|
1282 |
+
|
1283 |
+
#### Chat with multiple images
|
1284 |
+
<details>
|
1285 |
+
<summary> Click to show Python code running MiniCPM-o 2.6 with multiple images input. </summary>
|
1286 |
+
|
1287 |
+
```python
|
1288 |
+
image1 = Image.open('image1.jpg').convert('RGB')
|
1289 |
+
image2 = Image.open('image2.jpg').convert('RGB')
|
1290 |
+
question = 'Compare image 1 and image 2, tell me about the differences between image 1 and image 2.'
|
1291 |
+
msgs = [{'role': 'user', 'content': [image1, image2, question]}]
|
1292 |
+
answer = model.chat(
|
1293 |
+
msgs=msgs,
|
1294 |
+
tokenizer=tokenizer
|
1295 |
+
)
|
1296 |
+
print(answer)
|
1297 |
+
```
|
1298 |
+
</details>
|
1299 |
+
|
1300 |
+
#### In-context few-shot learning
|
1301 |
+
<details>
|
1302 |
+
<summary> Click to view Python code running MiniCPM-o 2.6 with few-shot input. </summary>
|
1303 |
+
|
1304 |
+
```python
|
1305 |
+
question = "production date"
|
1306 |
+
image1 = Image.open('example1.jpg').convert('RGB')
|
1307 |
+
answer1 = "2023.08.04"
|
1308 |
+
image2 = Image.open('example2.jpg').convert('RGB')
|
1309 |
+
answer2 = "2007.04.24"
|
1310 |
+
image_test = Image.open('test.jpg').convert('RGB')
|
1311 |
+
msgs = [
|
1312 |
+
{'role': 'user', 'content': [image1, question]}, {'role': 'assistant', 'content': [answer1]},
|
1313 |
+
{'role': 'user', 'content': [image2, question]}, {'role': 'assistant', 'content': [answer2]},
|
1314 |
+
{'role': 'user', 'content': [image_test, question]}
|
1315 |
+
]
|
1316 |
+
answer = model.chat(
|
1317 |
+
msgs=msgs,
|
1318 |
+
tokenizer=tokenizer
|
1319 |
+
)
|
1320 |
+
print(answer)
|
1321 |
+
```
|
1322 |
+
</details>
|
1323 |
+
|
1324 |
+
#### Chat with video
|
1325 |
+
<details>
|
1326 |
+
<summary> Click to view Python code running MiniCPM-o 2.6 with video input. </summary>
|
1327 |
+
|
1328 |
+
```python
|
1329 |
+
MAX_NUM_FRAMES=64 # if cuda OOM set a smaller number
|
1330 |
+
def encode_video(video_path):
|
1331 |
+
def uniform_sample(l, n):
|
1332 |
+
gap = len(l) / n
|
1333 |
+
idxs = [int(i * gap + gap / 2) for i in range(n)]
|
1334 |
+
return [l[i] for i in idxs]
|
1335 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
1336 |
+
sample_fps = round(vr.get_avg_fps() / 1) # FPS
|
1337 |
+
frame_idx = [i for i in range(0, len(vr), sample_fps)]
|
1338 |
+
if len(frame_idx) > MAX_NUM_FRAMES:
|
1339 |
+
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
|
1340 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
1341 |
+
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
|
1342 |
+
print('num frames:', len(frames))
|
1343 |
+
return frames
|
1344 |
+
video_path ="video_test.mp4"
|
1345 |
+
frames = encode_video(video_path)
|
1346 |
+
question = "Describe the video"
|
1347 |
+
msgs = [
|
1348 |
+
{'role': 'user', 'content': frames + [question]},
|
1349 |
+
]
|
1350 |
+
# Set decode params for video
|
1351 |
+
params={}
|
1352 |
+
params["use_image_id"] = False
|
1353 |
+
params["max_slice_nums"] = 2 # use 1 if cuda OOM and video resolution > 448*448
|
1354 |
+
answer = model.chat(
|
1355 |
+
msgs=msgs,
|
1356 |
+
tokenizer=tokenizer,
|
1357 |
+
**params
|
1358 |
+
)
|
1359 |
+
print(answer)
|
1360 |
+
```
|
1361 |
+
</details>
|
1362 |
+
|
1363 |
+
Please look at [GitHub](https://github.com/OpenBMB/MiniCPM-V) for more detail about usage.
|
1364 |
+
|
1365 |
+
|
1366 |
+
## Inference with llama.cpp<a id="llamacpp"></a>
|
1367 |
+
MiniCPM-o 2.6 can run with llama.cpp. See our fork of [llama.cpp](https://github.com/OpenBMB/llama.cpp/tree/minicpm-v2.5/examples/minicpmv) for more detail.
|
1368 |
+
|
1369 |
+
|
1370 |
+
## Int4 quantized version
|
1371 |
+
Download the int4 quantized version for lower GPU memory (7GB) usage: [MiniCPM-o-2_6-int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4).
|
1372 |
+
|
1373 |
+
|
1374 |
+
## License
|
1375 |
+
#### Model License
|
1376 |
+
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
1377 |
+
* The usage of MiniCPM-o and MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
|
1378 |
+
* The models and weights of MiniCPM are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-o 2.6 weights are also available for free commercial use.
|
1379 |
+
|
1380 |
+
|
1381 |
+
#### Statement
|
1382 |
+
* As an LMM, MiniCPM-o 2.6 generates contents by learning a large mount of multimodal corpora, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-o 2.6 does not represent the views and positions of the model developers
|
1383 |
+
* We will not be liable for any problems arising from the use of the MinCPM-V models, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
|
1384 |
+
|
1385 |
+
## Key Techniques and Other Multimodal Projects
|
1386 |
+
|
1387 |
+
👏 Welcome to explore key techniques of MiniCPM-o 2.6 and other multimodal projects of our team:
|
1388 |
+
|
1389 |
+
[VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)
|
1390 |
+
|
1391 |
+
## Citation
|
1392 |
+
|
1393 |
+
If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!
|
1394 |
+
|
1395 |
+
```bib
|
1396 |
+
@article{yao2024minicpm,
|
1397 |
+
title={MiniCPM-V: A GPT-4V Level MLLM on Your Phone},
|
1398 |
+
author={Yao, Yuan and Yu, Tianyu and Zhang, Ao and Wang, Chongyi and Cui, Junbo and Zhu, Hongji and Cai, Tianchi and Li, Haoyu and Zhao, Weilin and He, Zhihui and others},
|
1399 |
+
journal={arXiv preprint arXiv:2408.01800},
|
1400 |
+
year={2024}
|
1401 |
+
}
|
1402 |
+
```
|
configuration_minicpm.py
CHANGED
@@ -190,6 +190,7 @@ class MiniCPMOConfig(Qwen2Config):
|
|
190 |
elif isinstance(vision_config, SiglipVisionConfig):
|
191 |
self.vision_config = vision_config
|
192 |
|
|
|
193 |
if audio_config is None:
|
194 |
self.audio_config = WhisperConfig()
|
195 |
elif isinstance(audio_config, dict):
|
|
|
190 |
elif isinstance(vision_config, SiglipVisionConfig):
|
191 |
self.vision_config = vision_config
|
192 |
|
193 |
+
# same as openai/whisper-medium add use_cache
|
194 |
if audio_config is None:
|
195 |
self.audio_config = WhisperConfig()
|
196 |
elif isinstance(audio_config, dict):
|
modeling_minicpmo.py
CHANGED
@@ -121,19 +121,21 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
121 |
|
122 |
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
123 |
|
124 |
-
self.terminators = [
|
125 |
|
126 |
self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
|
127 |
self.force_no_stop = False
|
128 |
|
129 |
# for stream api
|
|
|
|
|
|
|
130 |
self.session_id = None
|
131 |
self.new_user_msg = True
|
132 |
self.llm_generated = False
|
133 |
self.llm_generate_completed = False
|
134 |
self.llm_past_key_values = None
|
135 |
self.audio_past_key_values = None # apm kv cache
|
136 |
-
self.speak_score = [0.0]
|
137 |
|
138 |
def init_tts(
|
139 |
self,
|
@@ -401,6 +403,21 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
401 |
return vllm_embedding, vision_hidden_states
|
402 |
|
403 |
def get_audio_embedding_streaming(self, data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
|
405 |
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
|
406 |
|
@@ -447,15 +464,24 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
447 |
return []
|
448 |
|
449 |
def get_audio_embedding(self, data, chunk_length=-1):
|
450 |
-
"""
|
451 |
-
|
|
|
|
|
|
|
|
|
|
|
452 |
Args:
|
453 |
-
data:
|
454 |
-
|
455 |
-
|
|
|
|
|
|
|
456 |
Returns:
|
457 |
-
audio embeddings
|
458 |
"""
|
|
|
459 |
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
|
460 |
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
|
461 |
|
@@ -520,7 +546,6 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
520 |
|
521 |
def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
|
522 |
"""
|
523 |
-
|
524 |
Args:
|
525 |
data:
|
526 |
input_embeddings:
|
@@ -576,14 +601,21 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
576 |
|
577 |
def forward(self, data, **kwargs):
|
578 |
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
579 |
-
|
580 |
-
|
581 |
-
|
|
|
|
|
582 |
|
583 |
position_ids = data["position_ids"]
|
584 |
if position_ids.dtype != torch.int64:
|
585 |
position_ids = position_ids.long()
|
586 |
|
|
|
|
|
|
|
|
|
|
|
587 |
return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)
|
588 |
|
589 |
def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
|
@@ -627,6 +659,93 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
627 |
result_text.append(tokenizer.decode(result))
|
628 |
return result_text
|
629 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
630 |
def generate(
|
631 |
self,
|
632 |
input_ids=None,
|
@@ -697,7 +816,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
697 |
omni_input=False,
|
698 |
max_slice_nums=None,
|
699 |
use_image_id=None,
|
700 |
-
|
701 |
generate_audio=False,
|
702 |
return_spk_embed=False,
|
703 |
return_dict=False,
|
@@ -721,7 +840,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
721 |
omni_input: determine whether it is omni mode
|
722 |
max_slice_nums: control the maximum number of image slices
|
723 |
use_image_id: for video understanding or omni understanding, use_image_id should be False
|
724 |
-
|
725 |
generate_audio: whether to generate audio output, only used when return_dict=True
|
726 |
return_spk_embed: whether to return spk embedding, only used when return_dict=True
|
727 |
return_dict: whether to return dict
|
@@ -798,12 +917,12 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
798 |
for c in content:
|
799 |
if isinstance(c, Image.Image):
|
800 |
images.append(c)
|
801 |
-
cur_msgs.append("<image>./</image>")
|
802 |
elif isinstance(c, np.ndarray): # audio
|
803 |
audios.append(c)
|
804 |
audio_parts.append(i)
|
805 |
-
cur_msgs.append("<audio>./</audio>")
|
806 |
-
|
807 |
elif isinstance(c, str):
|
808 |
cur_msgs.append(c)
|
809 |
if omni_input:
|
@@ -816,7 +935,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
816 |
copy_msgs,
|
817 |
tokenize=False,
|
818 |
add_generation_prompt=True,
|
819 |
-
chat_template=self.default_tts_chat_template if
|
820 |
)
|
821 |
)
|
822 |
input_images_list.append(images)
|
@@ -886,13 +1005,18 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
886 |
else:
|
887 |
answer = res[0]
|
888 |
|
889 |
-
if
|
890 |
mel_spec = self._generate_mel_spec(inputs, outputs, answer)
|
891 |
wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)
|
892 |
|
893 |
if return_spk_embed:
|
894 |
spk_embeds = self._get_last_spk_embeds(inputs, outputs)
|
895 |
|
|
|
|
|
|
|
|
|
|
|
896 |
if return_dict:
|
897 |
return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
|
898 |
else:
|
@@ -904,6 +1028,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
904 |
session_id,
|
905 |
msgs,
|
906 |
tokenizer,
|
|
|
907 |
max_slice_nums=None,
|
908 |
ls_temperature=1.0,
|
909 |
**kwargs,
|
@@ -933,26 +1058,27 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
933 |
for j, c in enumerate(content):
|
934 |
if isinstance(c, Image.Image):
|
935 |
images.append(c)
|
936 |
-
cur_msgs.append("<image>./</image>")
|
937 |
elif isinstance(c, np.ndarray): # audio
|
938 |
audios.append(c)
|
939 |
-
cur_msgs.append("<audio>./</audio>")
|
940 |
elif isinstance(c, str):
|
941 |
cur_msgs.append(c)
|
942 |
else:
|
943 |
logger.error("Invalid content type:", c)
|
944 |
|
|
|
945 |
if not self.is_first and self.new_user_msg and msg["role"] == "user": # new user add im_start
|
946 |
if self.llm_generated:
|
947 |
if self.llm_generate_completed:
|
948 |
-
msg["content"] = "<|im_end|>\n<|im_start|>user\n" +
|
949 |
else: # break llm gen, add tts_eos
|
950 |
-
msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" +
|
951 |
else:
|
952 |
-
msg["content"] = "<|im_start|>user\n" +
|
953 |
self.new_user_msg = False
|
954 |
else:
|
955 |
-
msg["content"] =
|
956 |
|
957 |
if msg["role"] in ["system", "assistant"]:
|
958 |
self.new_user_msg = True
|
@@ -960,11 +1086,9 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
960 |
|
961 |
if self.is_first:
|
962 |
# init pask_key_values
|
963 |
-
logger.
|
|
|
964 |
self.session_id = session_id
|
965 |
-
self.llm_past_key_values = None # llm kv cache
|
966 |
-
self.new_user_msg = True
|
967 |
-
self.audio_past_key_values = None # apm kv cache
|
968 |
|
969 |
prompt = tokenizer.apply_chat_template(
|
970 |
copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
|
@@ -1015,14 +1139,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1015 |
return_dict=True,
|
1016 |
)
|
1017 |
self.llm_past_key_values = outputs["past_key_values"]
|
1018 |
-
|
1019 |
-
listen_id = tokenizer.convert_tokens_to_ids("<|listen|>")
|
1020 |
-
speak_id = tokenizer.convert_tokens_to_ids("<|speak|>")
|
1021 |
-
listen_speak_score = torch.Tensor([outputs["logits"][0, -1, listen_id], outputs["logits"][0, -1, speak_id]])
|
1022 |
-
listen_speak_score = F.softmax(listen_speak_score / ls_temperature, dim=0).numpy()
|
1023 |
-
self.speak_score = [float(listen_speak_score[1])]
|
1024 |
-
|
1025 |
-
return self.speak_score
|
1026 |
|
1027 |
@torch.inference_mode()
|
1028 |
def streaming_generate(
|
@@ -1032,7 +1149,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1032 |
max_new_tokens=512,
|
1033 |
min_new_tokens=0,
|
1034 |
sampling=True,
|
1035 |
-
|
1036 |
enable_regenerate=False,
|
1037 |
**kwargs,
|
1038 |
):
|
@@ -1079,7 +1196,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1079 |
generation_config["max_new_tokens"] = max_new_tokens
|
1080 |
streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)
|
1081 |
|
1082 |
-
if
|
1083 |
result = self._generate_mel_spec_audio_streaming(
|
1084 |
spk_bounds, streamer, output_chunk_size=25, enable_regenerate=enable_regenerate
|
1085 |
)
|
@@ -1323,6 +1440,10 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1323 |
return mel_spec
|
1324 |
|
1325 |
def _linear_overlap_add2_wav(self, frames: List[torch.Tensor], overlap: int):
|
|
|
|
|
|
|
|
|
1326 |
assert len(frames) == 2
|
1327 |
device = frames[0].device
|
1328 |
dtype = frames[0].dtype
|
@@ -1569,7 +1690,8 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1569 |
prev_wav = wav_np[len(prev_wav) :]
|
1570 |
cur_text = gen_text_raw[prev_text_len:]
|
1571 |
prev_text_len = len(gen_text_raw)
|
1572 |
-
yield wav_y, sr
|
|
|
1573 |
else:
|
1574 |
prev_wav = wav_np
|
1575 |
else:
|
@@ -1580,7 +1702,8 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1580 |
) # tts_hop256*2
|
1581 |
cur_text = gen_text_raw[prev_text_len:]
|
1582 |
prev_text_len = len(gen_text_raw)
|
1583 |
-
yield wav_np, sr
|
|
|
1584 |
else:
|
1585 |
prev_wav = wav_np
|
1586 |
|
@@ -1678,7 +1801,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1678 |
prev_wav = wav_np[len(prev_wav) :]
|
1679 |
cur_text = gen_text_raw[prev_text_len:]
|
1680 |
prev_text_len = len(gen_text_raw)
|
1681 |
-
yield wav_y, sr
|
1682 |
else:
|
1683 |
prev_wav = wav_np
|
1684 |
else:
|
@@ -1689,7 +1812,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1689 |
) # tts_hop256*2
|
1690 |
cur_text = gen_text_raw[prev_text_len:]
|
1691 |
prev_text_len = len(gen_text_raw)
|
1692 |
-
yield wav_np, sr
|
1693 |
else:
|
1694 |
prev_wav = wav_np
|
1695 |
|
@@ -1703,7 +1826,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1703 |
|
1704 |
if prev_wav is not None:
|
1705 |
cur_text = gen_text_raw[prev_text_len:]
|
1706 |
-
yield prev_wav, sr
|
1707 |
|
1708 |
if new_segment_gen and not stop:
|
1709 |
logger.debug(
|
@@ -1737,6 +1860,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel):
|
|
1737 |
return wav_numpy, sr
|
1738 |
|
1739 |
|
|
|
1740 |
class MiniCPMWhisperEncoderLayer(nn.Module):
|
1741 |
def __init__(self, config: WhisperConfig, layer_idx: int = None):
|
1742 |
super().__init__()
|
@@ -1765,6 +1889,24 @@ class MiniCPMWhisperEncoderLayer(nn.Module):
|
|
1765 |
past_key_values: Optional[EncoderDecoderCache] = None,
|
1766 |
use_cache: Optional[bool] = False,
|
1767 |
) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1768 |
residual = hidden_states
|
1769 |
hidden_states = self.self_attn_layer_norm(hidden_states)
|
1770 |
hidden_states, attn_weights, past_key_values = self.self_attn(
|
@@ -1802,6 +1944,7 @@ class MiniCPMWhisperEncoderLayer(nn.Module):
|
|
1802 |
return outputs
|
1803 |
|
1804 |
|
|
|
1805 |
class MiniCPMWhisperEncoder(WhisperEncoder):
|
1806 |
|
1807 |
def __init__(self, config: WhisperConfig):
|
@@ -1821,6 +1964,107 @@ class MiniCPMWhisperEncoder(WhisperEncoder):
|
|
1821 |
past_key_values: Optional[EncoderDecoderCache] = None,
|
1822 |
use_cache: Optional[bool] = None,
|
1823 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1824 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1825 |
output_hidden_states = (
|
1826 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
@@ -1935,7 +2179,7 @@ class MiniCPMWhisperEncoder(WhisperEncoder):
|
|
1935 |
)
|
1936 |
|
1937 |
|
1938 |
-
# dvae
|
1939 |
class ConvNeXtBlock(nn.Module):
|
1940 |
def __init__(
|
1941 |
self,
|
@@ -1989,6 +2233,7 @@ class ConvNeXtBlock(nn.Module):
|
|
1989 |
return x
|
1990 |
|
1991 |
|
|
|
1992 |
class GFSQ(nn.Module):
|
1993 |
def __init__(
|
1994 |
self,
|
@@ -2031,6 +2276,7 @@ class GFSQ(nn.Module):
|
|
2031 |
return ind.transpose_(1, 2) if self.transpose else ind
|
2032 |
|
2033 |
|
|
|
2034 |
class DVAEDecoder(nn.Module):
|
2035 |
def __init__(
|
2036 |
self,
|
@@ -2075,6 +2321,7 @@ class DVAEDecoder(nn.Module):
|
|
2075 |
return x
|
2076 |
|
2077 |
|
|
|
2078 |
class DVAE(nn.Module):
|
2079 |
def __init__(
|
2080 |
self,
|
@@ -2153,7 +2400,6 @@ class DVAE(nn.Module):
|
|
2153 |
return torch.mul(dec_out, self.coef, out=dec_out)
|
2154 |
|
2155 |
|
2156 |
-
# tts module
|
2157 |
def apply_spk_emb(
|
2158 |
input_ids: torch.Tensor = None,
|
2159 |
spk_emb: torch.Tensor = None,
|
@@ -2162,7 +2408,7 @@ def apply_spk_emb(
|
|
2162 |
num_spk_embs: int = 1,
|
2163 |
):
|
2164 |
"""
|
2165 |
-
Replace consecutive speaker embedding placeholders in input_embeds with pre-prepared speaker embeddings. This is an in-place replacement, no new tensor is created, so no value is returned.
|
2166 |
|
2167 |
Args:
|
2168 |
input_ids (torch.Tensor): Input ID tensor, shape [batch_size, seq_len_max]
|
@@ -2201,7 +2447,7 @@ def make_streaming_chunk_mask_generation(
|
|
2201 |
use_spk_emb: bool = True,
|
2202 |
) -> torch.Tensor:
|
2203 |
"""
|
2204 |
-
|
2205 |
|
2206 |
This function creates a mask that allows the model to attend to a specific chunk of text
|
2207 |
tokens when generating each chunk of audio tokens, enabling streaming TTS generation.
|
@@ -2258,6 +2504,7 @@ def make_streaming_chunk_mask_generation(
|
|
2258 |
return causal_mask
|
2259 |
|
2260 |
|
|
|
2261 |
class CustomRepetitionPenaltyLogitsProcessorRepeat:
|
2262 |
def __init__(self, penalty: float, max_input_ids: int, past_window: int):
|
2263 |
if not isinstance(penalty, float) or not (penalty > 0):
|
@@ -2316,6 +2563,97 @@ class MultiModalProjector(nn.Module):
|
|
2316 |
|
2317 |
|
2318 |
class ConditionalChatTTS(PreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2319 |
config_class = ConditionalChatTTSConfig
|
2320 |
|
2321 |
def __init__(self, config: ConditionalChatTTSConfig):
|
@@ -2373,19 +2711,16 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2373 |
self.model = model
|
2374 |
|
2375 |
@torch.inference_mode()
|
2376 |
-
def
|
2377 |
self,
|
2378 |
input_ids: torch.Tensor,
|
2379 |
lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
|
2380 |
-
lm_last_hidden_states: Optional[torch.Tensor] = None,
|
2381 |
):
|
2382 |
-
"""
|
2383 |
-
encode input_ids to embeddings, then merge lm_spk_emb_last_hidden_states, and lm_last_hidden_states.
|
2384 |
|
2385 |
Args:
|
2386 |
input_ids (torch.Tensor): Input token IDs.
|
2387 |
lm_spk_emb_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states of speaker embeddings from the language model. Defaults to None.
|
2388 |
-
lm_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states from the language model. Defaults to None.
|
2389 |
|
2390 |
Raises:
|
2391 |
NotImplementedError: If speaker embedding is not used and language model hidden states are not implemented.
|
@@ -2415,8 +2750,6 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2415 |
num_spk_embs=self.num_spk_embs,
|
2416 |
)
|
2417 |
else:
|
2418 |
-
assert lm_last_hidden_states is not None
|
2419 |
-
# TODO: Add projected language model hidden states to tts embedding space
|
2420 |
raise NotImplementedError
|
2421 |
|
2422 |
return inputs_embeds
|
@@ -2428,10 +2761,9 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2428 |
position_ids: torch.LongTensor,
|
2429 |
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
|
2430 |
lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
|
2431 |
-
lm_last_hidden_states: Optional[torch.Tensor] = None,
|
2432 |
):
|
2433 |
"""Prefill a chunk of new text tokens in streaming setting.
|
2434 |
-
Specifically speaking, update `past_key_values` using new text tokens.
|
2435 |
|
2436 |
Args:
|
2437 |
input_ids (Tensor): Tensor of shape [batch_size, seq_len]
|
@@ -2445,11 +2777,10 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2445 |
assert input_ids.shape[0] == 1
|
2446 |
assert past_key_values is not None
|
2447 |
|
2448 |
-
# Merge text and embeddings
|
2449 |
-
inputs_embeds = self.
|
2450 |
input_ids=input_ids,
|
2451 |
lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
|
2452 |
-
lm_last_hidden_states=lm_last_hidden_states,
|
2453 |
)
|
2454 |
|
2455 |
# Clone KV Cache
|
@@ -2476,7 +2807,7 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2476 |
# Get model updated KV Cache
|
2477 |
past_key_values_for_prefill_updated = outputs_prefill.past_key_values
|
2478 |
|
2479 |
-
# Update generated KV Cache to input past_key_values
|
2480 |
for layer_idx in range(len(past_key_values)):
|
2481 |
# Update keys
|
2482 |
past_key_values[layer_idx][0][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
|
@@ -2504,7 +2835,9 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2504 |
streaming_tts_text_mask=None,
|
2505 |
add_audio_bos: bool = True,
|
2506 |
):
|
2507 |
-
"""
|
|
|
|
|
2508 |
Args:
|
2509 |
input_ids (torch.Tensor): (1, seq_len, num_vq) Audio input token ids.
|
2510 |
past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
|
@@ -2534,7 +2867,7 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2534 |
streaming_tts_text_mask=streaming_tts_text_mask,
|
2535 |
streaming_reserved_length=self.streaming_text_reserved_len,
|
2536 |
streaming_text_chunk_size=self.streaming_text_chunk_size,
|
2537 |
-
) # [1, 1, 1,
|
2538 |
|
2539 |
# Model forward
|
2540 |
outputs: BaseModelOutputWithPast = self.model(
|
@@ -2564,57 +2897,12 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2564 |
logits_processors: List[CustomRepetitionPenaltyLogitsProcessorRepeat] = [],
|
2565 |
show_tqdm=False,
|
2566 |
):
|
2567 |
-
"""Generate audio codes in streaming setting.
|
2568 |
Specifically speaking, generate audio codes when not all text tokens are prefilled.
|
2569 |
|
2570 |
-
|
2571 |
-
Always pass an non-empty `past_key_values` to the function. The function does not do `prefill` by itself. It relies on `prefill_text` method to provide a valid `past_key_values`.
|
2572 |
|
2573 |
-
|
2574 |
-
```python
|
2575 |
-
initial_kv_cache_length = 1 + self.num_spk_embs + self.streaming_text_reserved_len
|
2576 |
-
dtype = model.emb_text.weight.dtype
|
2577 |
-
device = model.emb_text.weight.device
|
2578 |
-
past_key_values = [
|
2579 |
-
(
|
2580 |
-
torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device),
|
2581 |
-
torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device)
|
2582 |
-
)
|
2583 |
-
for _ in range(model.config.num_hidden_layers)
|
2584 |
-
]
|
2585 |
-
|
2586 |
-
2. Prefill some text tokens using `prefill_text` method.
|
2587 |
-
```python
|
2588 |
-
outputs = llm.generate(**kwargs)
|
2589 |
-
lm_spk_emb_last_hidden_states or lm_last_hidden_states = extract(outputs.last_hidden_states)
|
2590 |
-
input_ids = tts_tokenizer.encode(llm_tokenizer.decode(llm_tokens))
|
2591 |
-
position_ids = torch.arange(begin, end, dtype=torch.long, device=device)
|
2592 |
-
past_key_values = self.prefill_text(
|
2593 |
-
input_ids=input_ids,
|
2594 |
-
position_ids=position_ids,
|
2595 |
-
past_key_values=past_key_values,
|
2596 |
-
lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
|
2597 |
-
lm_last_hidden_states=lm_last_hidden_states,
|
2598 |
-
)
|
2599 |
-
```
|
2600 |
-
|
2601 |
-
3. Generate audio codes using `generate` method.
|
2602 |
-
```python
|
2603 |
-
# initialize input_ids, this should be only done `once`
|
2604 |
-
condition_length = 1 + model.num_spk_embs * model.use_speaker_embedding + model.streaming_text_reserved_len + 1
|
2605 |
-
input_ids = torch.zeros(batch_size=1, condition_length, self.num_vq)
|
2606 |
-
|
2607 |
-
outputs = self.generate(
|
2608 |
-
input_ids=input_ids,
|
2609 |
-
past_key_values=past_key_values,
|
2610 |
-
)
|
2611 |
-
|
2612 |
-
# update past_key_values and input_ids
|
2613 |
-
past_key_values = outputs.past_key_values
|
2614 |
-
input_ids = outputs.input_ids
|
2615 |
-
```
|
2616 |
-
|
2617 |
-
4. Repeat step 2 and 3.
|
2618 |
|
2619 |
Args:
|
2620 |
input_ids (torch.Tensor): Input token ids.
|
@@ -2626,8 +2914,7 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2626 |
logits_warpers (List[LogitsWarper], optional): List of logits warpers. Defaults to [].
|
2627 |
logits_processors (List[CustomRepetitionPenaltyLogitsProcessorRepeat], optional): List of logits processors. Defaults to [].
|
2628 |
show_tqdm (bool, optional): Whether to show progress bar. Defaults to True.
|
2629 |
-
|
2630 |
-
NotImplementedError: _description_
|
2631 |
Returns:
|
2632 |
GenerationOutputs: Generation outputs.
|
2633 |
"""
|
@@ -2655,7 +2942,7 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2655 |
device=input_ids.device,
|
2656 |
)
|
2657 |
|
2658 |
-
# Copy existing input_ids to input_ids_buf
|
2659 |
input_ids_buf.narrow(1, 0, progress).copy_(input_ids)
|
2660 |
|
2661 |
del input_ids
|
@@ -2674,19 +2961,22 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2674 |
for i in range(max_new_token):
|
2675 |
# Prepare generation inputs
|
2676 |
audio_bos = False
|
2677 |
-
|
|
|
2678 |
if progress == condition_length:
|
2679 |
audio_bos = True
|
2680 |
|
|
|
|
|
|
|
|
|
2681 |
if audio_bos:
|
2682 |
-
# Generate the first token, activate the model with `self.audio_bos_token_id`, the model will predict a new audio token.
|
2683 |
-
assert progress == (past_key_values[0][0].shape[2] + 1)
|
2684 |
narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
|
2685 |
inputs_embeds = self.emb_text(narrowed_input_ids)
|
2686 |
del narrowed_input_ids
|
2687 |
else:
|
2688 |
-
# Generate the following audio tokens, it is applicable to all other cases, including second and the following calling of `generate
|
2689 |
-
assert progress == (past_key_values[0][0].shape[2] + 1)
|
2690 |
narrowed_input_ids = input_ids.narrow(dim=1, start=input_ids.shape[1] - 1, length=1)
|
2691 |
code_emb = [self.emb_code[i](narrowed_input_ids[:, :, i]) for i in range(self.num_vq)]
|
2692 |
inputs_embeds = torch.stack(code_emb, 3).sum(3)
|
@@ -2696,6 +2986,8 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2696 |
).unsqueeze(0)
|
2697 |
|
2698 |
cache_position = position_ids.clone()
|
|
|
|
|
2699 |
causal_mask = make_streaming_chunk_mask_generation(
|
2700 |
inputs_embeds=inputs_embeds,
|
2701 |
past_seen_tokens=past_key_values[0][0].shape[2],
|
@@ -2787,7 +3079,7 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2787 |
finish.logical_or_(finish_or)
|
2788 |
|
2789 |
del finish_or
|
2790 |
-
#
|
2791 |
input_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1))
|
2792 |
|
2793 |
if i == 0 and finish.any():
|
@@ -2831,8 +3123,18 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2831 |
def decode_to_mel_specs(
|
2832 |
self,
|
2833 |
result_list: List[torch.Tensor],
|
2834 |
-
use_decoder: bool = False,
|
2835 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2836 |
decoder = self.dvae
|
2837 |
max_x_len = -1
|
2838 |
if len(result_list) == 0:
|
@@ -2855,6 +3157,7 @@ class ConditionalChatTTS(PreTrainedModel):
|
|
2855 |
return mel_specs
|
2856 |
|
2857 |
|
|
|
2858 |
def gen_logits(
|
2859 |
num_code: int,
|
2860 |
top_P=0.7,
|
|
|
121 |
|
122 |
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
123 |
|
124 |
+
self.terminators = ["<|im_end|>", "<|endoftext|>"]
|
125 |
|
126 |
self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
|
127 |
self.force_no_stop = False
|
128 |
|
129 |
# for stream api
|
130 |
+
self.reset_session()
|
131 |
+
|
132 |
+
def reset_session(self):
|
133 |
self.session_id = None
|
134 |
self.new_user_msg = True
|
135 |
self.llm_generated = False
|
136 |
self.llm_generate_completed = False
|
137 |
self.llm_past_key_values = None
|
138 |
self.audio_past_key_values = None # apm kv cache
|
|
|
139 |
|
140 |
def init_tts(
|
141 |
self,
|
|
|
403 |
return vllm_embedding, vision_hidden_states
|
404 |
|
405 |
def get_audio_embedding_streaming(self, data):
|
406 |
+
r"""
|
407 |
+
Extract audio embeddings in a streaming manner using cached key-value pairs.
|
408 |
+
|
409 |
+
This method processes incoming audio features incrementally and stores/updates `past_key_values`
|
410 |
+
for faster inference on subsequent audio frames. It only supports batch_size=1 and is intended
|
411 |
+
for streaming scenarios.
|
412 |
+
|
413 |
+
Args:
|
414 |
+
data (dict):
|
415 |
+
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
|
416 |
+
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
|
417 |
+
|
418 |
+
Returns:
|
419 |
+
List[List[torch.Tensor]]: audio embeddings
|
420 |
+
"""
|
421 |
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
|
422 |
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
|
423 |
|
|
|
464 |
return []
|
465 |
|
466 |
def get_audio_embedding(self, data, chunk_length=-1):
|
467 |
+
r"""
|
468 |
+
Extract full audio embeddings with optional chunk-based attention.
|
469 |
+
|
470 |
+
This method computes embeddings for all audio frames at once, either using full attention (when
|
471 |
+
`chunk_length` is -1) or chunk-based attention (when `chunk_length` is a positive number). It does
|
472 |
+
not use key-value caching and is suitable for non-streaming inference.
|
473 |
+
|
474 |
Args:
|
475 |
+
data (dict):
|
476 |
+
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
|
477 |
+
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
|
478 |
+
chunk_length (int, optional): Determines whether to use full attention (-1) or chunk-based
|
479 |
+
attention (>0) during embedding computation.
|
480 |
+
|
481 |
Returns:
|
482 |
+
List[List[torch.Tensor]]: audio embeddings
|
483 |
"""
|
484 |
+
|
485 |
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
|
486 |
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
|
487 |
|
|
|
546 |
|
547 |
def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
|
548 |
"""
|
|
|
549 |
Args:
|
550 |
data:
|
551 |
input_embeddings:
|
|
|
601 |
|
602 |
def forward(self, data, **kwargs):
|
603 |
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
604 |
+
|
605 |
+
if self.config.init_audio:
|
606 |
+
vllm_embedding = self.get_omni_embedding(
|
607 |
+
data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
|
608 |
+
)
|
609 |
|
610 |
position_ids = data["position_ids"]
|
611 |
if position_ids.dtype != torch.int64:
|
612 |
position_ids = position_ids.long()
|
613 |
|
614 |
+
# compatible with llama factory
|
615 |
+
for key in ["input_ids", "inputs_embeds", "position_ids"]:
|
616 |
+
if key in kwargs:
|
617 |
+
del kwargs[key]
|
618 |
+
|
619 |
return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)
|
620 |
|
621 |
def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
|
|
|
659 |
result_text.append(tokenizer.decode(result))
|
660 |
return result_text
|
661 |
|
662 |
+
def get_sys_prompt(self, ref_audio=None, mode="default", language="zh"):
|
663 |
+
"""
|
664 |
+
Choose different system prompts according to different tasks
|
665 |
+
Args:
|
666 |
+
ref_audio: if ref_audio is not None, will use the voice cloning prompts, and the voice
|
667 |
+
generated by the model will refer to the timbre of ref audio
|
668 |
+
mode:
|
669 |
+
"default": default system prompt and not refer to any task
|
670 |
+
"omni": input video and audio simultaneously
|
671 |
+
"audio_assistant": Default voice-only mode, the model will use the ref_audio's voice to reply user as a helpful assistant.
|
672 |
+
"audio_roleplay": Roleplay voice-only model, the model will use the ref_audio's voice to reply, and also role-play the character based on the audio prompt.
|
673 |
+
"voice_cloning": TTS mode, the model will clone the voice of ref_audio
|
674 |
+
language: prompts language, the model has the ability to automatically select the response language
|
675 |
+
based on the question language
|
676 |
+
Returns:
|
677 |
+
|
678 |
+
"""
|
679 |
+
if ref_audio is not None:
|
680 |
+
assert isinstance(ref_audio, np.ndarray), "ref_audio error"
|
681 |
+
if mode == "omni":
|
682 |
+
if language == "zh":
|
683 |
+
sys_prompt = "你是一个AI助手。你能接受视频,音频和文本输入并输出语音和文本。"
|
684 |
+
vc_prompt_prefix = sys_prompt + "模仿输入音频中的声音特征。"
|
685 |
+
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
|
686 |
+
else:
|
687 |
+
sys_prompt = "You are a helpful assistant. You can accept video, audio and text input and output voice and text. "
|
688 |
+
vc_prompt_prefix = sys_prompt + "Clone the voice in the provided audio prompt."
|
689 |
+
vc_prompt_suffix = "As an assistant, you will speak using this voice style."
|
690 |
+
|
691 |
+
if ref_audio is not None:
|
692 |
+
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
|
693 |
+
|
694 |
+
else:
|
695 |
+
sys_msgs = {"role": "user", "content": [sys_prompt]}
|
696 |
+
|
697 |
+
return sys_msgs
|
698 |
+
elif mode == "audio_assistant":
|
699 |
+
if language == "zh":
|
700 |
+
vc_prompt_prefix = "模仿输入音频中的声音特征。"
|
701 |
+
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
|
702 |
+
else:
|
703 |
+
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
|
704 |
+
vc_prompt_suffix = "As an assistant, you will speak using this voice style."
|
705 |
+
|
706 |
+
if ref_audio is not None:
|
707 |
+
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
|
708 |
+
|
709 |
+
else:
|
710 |
+
logger.warning(
|
711 |
+
"Warning: ref_audio is None, speech generation will be performed based on the default voice."
|
712 |
+
)
|
713 |
+
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
|
714 |
+
|
715 |
+
return sys_msgs
|
716 |
+
elif mode == "audio_roleplay":
|
717 |
+
if language == "zh":
|
718 |
+
vc_prompt_prefix = "模仿输入音频中的声音特征。"
|
719 |
+
vc_prompt_suffix = "假装你是上述音频中的人物,与我进行对话。"
|
720 |
+
else:
|
721 |
+
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
|
722 |
+
vc_prompt_suffix = "Try to role-play the character based on the audio prompt above."
|
723 |
+
|
724 |
+
if ref_audio is not None:
|
725 |
+
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
|
726 |
+
else:
|
727 |
+
print("Warning: ref_audio is None, speech generation will be performed based on the default voice.")
|
728 |
+
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
|
729 |
+
|
730 |
+
return sys_msgs
|
731 |
+
elif mode == "voice_cloning":
|
732 |
+
if language == "zh":
|
733 |
+
vc_prompt_prefix = "模仿输入音频中的声音特征。"
|
734 |
+
else:
|
735 |
+
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
|
736 |
+
|
737 |
+
if ref_audio is not None:
|
738 |
+
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio]}
|
739 |
+
else:
|
740 |
+
raise ValueError("ref_audio con't be None in voice_cloning mode.")
|
741 |
+
|
742 |
+
return sys_msgs
|
743 |
+
else:
|
744 |
+
sys_prompt = "You are a helpful assistant. You can accept audio and text input and output voice and text."
|
745 |
+
sys_msgs = {"role": "user", "content": [sys_prompt]}
|
746 |
+
|
747 |
+
return sys_msgs
|
748 |
+
|
749 |
def generate(
|
750 |
self,
|
751 |
input_ids=None,
|
|
|
816 |
omni_input=False,
|
817 |
max_slice_nums=None,
|
818 |
use_image_id=None,
|
819 |
+
use_tts_template=False,
|
820 |
generate_audio=False,
|
821 |
return_spk_embed=False,
|
822 |
return_dict=False,
|
|
|
840 |
omni_input: determine whether it is omni mode
|
841 |
max_slice_nums: control the maximum number of image slices
|
842 |
use_image_id: for video understanding or omni understanding, use_image_id should be False
|
843 |
+
use_tts_template: if the msgs contain audio, use_tts_template should be True
|
844 |
generate_audio: whether to generate audio output, only used when return_dict=True
|
845 |
return_spk_embed: whether to return spk embedding, only used when return_dict=True
|
846 |
return_dict: whether to return dict
|
|
|
917 |
for c in content:
|
918 |
if isinstance(c, Image.Image):
|
919 |
images.append(c)
|
920 |
+
cur_msgs.append("(<image>./</image>)")
|
921 |
elif isinstance(c, np.ndarray): # audio
|
922 |
audios.append(c)
|
923 |
audio_parts.append(i)
|
924 |
+
cur_msgs.append("(<audio>./</audio>)")
|
925 |
+
use_tts_template = True
|
926 |
elif isinstance(c, str):
|
927 |
cur_msgs.append(c)
|
928 |
if omni_input:
|
|
|
935 |
copy_msgs,
|
936 |
tokenize=False,
|
937 |
add_generation_prompt=True,
|
938 |
+
chat_template=self.default_tts_chat_template if use_tts_template else None,
|
939 |
)
|
940 |
)
|
941 |
input_images_list.append(images)
|
|
|
1005 |
else:
|
1006 |
answer = res[0]
|
1007 |
|
1008 |
+
if use_tts_template and generate_audio:
|
1009 |
mel_spec = self._generate_mel_spec(inputs, outputs, answer)
|
1010 |
wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)
|
1011 |
|
1012 |
if return_spk_embed:
|
1013 |
spk_embeds = self._get_last_spk_embeds(inputs, outputs)
|
1014 |
|
1015 |
+
if isinstance(answer, list):
|
1016 |
+
answer = [i.replace(tokenizer.tts_end, "") for i in answer]
|
1017 |
+
else:
|
1018 |
+
answer = answer.replace(tokenizer.tts_end, "")
|
1019 |
+
|
1020 |
if return_dict:
|
1021 |
return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
|
1022 |
else:
|
|
|
1028 |
session_id,
|
1029 |
msgs,
|
1030 |
tokenizer,
|
1031 |
+
omni_input=True,
|
1032 |
max_slice_nums=None,
|
1033 |
ls_temperature=1.0,
|
1034 |
**kwargs,
|
|
|
1058 |
for j, c in enumerate(content):
|
1059 |
if isinstance(c, Image.Image):
|
1060 |
images.append(c)
|
1061 |
+
cur_msgs.append("(<image>./</image>)")
|
1062 |
elif isinstance(c, np.ndarray): # audio
|
1063 |
audios.append(c)
|
1064 |
+
cur_msgs.append("(<audio>./</audio>)")
|
1065 |
elif isinstance(c, str):
|
1066 |
cur_msgs.append(c)
|
1067 |
else:
|
1068 |
logger.error("Invalid content type:", c)
|
1069 |
|
1070 |
+
cur_contents = "".join(cur_msgs) if omni_input else "\n".join(omni_input)
|
1071 |
if not self.is_first and self.new_user_msg and msg["role"] == "user": # new user add im_start
|
1072 |
if self.llm_generated:
|
1073 |
if self.llm_generate_completed:
|
1074 |
+
msg["content"] = "<|im_end|>\n<|im_start|>user\n" + cur_contents
|
1075 |
else: # break llm gen, add tts_eos
|
1076 |
+
msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" + cur_contents
|
1077 |
else:
|
1078 |
+
msg["content"] = "<|im_start|>user\n" + cur_contents
|
1079 |
self.new_user_msg = False
|
1080 |
else:
|
1081 |
+
msg["content"] = cur_contents
|
1082 |
|
1083 |
if msg["role"] in ["system", "assistant"]:
|
1084 |
self.new_user_msg = True
|
|
|
1086 |
|
1087 |
if self.is_first:
|
1088 |
# init pask_key_values
|
1089 |
+
logger.info(f"new session_id: {session_id}, reset kv cache")
|
1090 |
+
self.reset_session()
|
1091 |
self.session_id = session_id
|
|
|
|
|
|
|
1092 |
|
1093 |
prompt = tokenizer.apply_chat_template(
|
1094 |
copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
|
|
|
1139 |
return_dict=True,
|
1140 |
)
|
1141 |
self.llm_past_key_values = outputs["past_key_values"]
|
1142 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1143 |
|
1144 |
@torch.inference_mode()
|
1145 |
def streaming_generate(
|
|
|
1149 |
max_new_tokens=512,
|
1150 |
min_new_tokens=0,
|
1151 |
sampling=True,
|
1152 |
+
generate_audio=True,
|
1153 |
enable_regenerate=False,
|
1154 |
**kwargs,
|
1155 |
):
|
|
|
1196 |
generation_config["max_new_tokens"] = max_new_tokens
|
1197 |
streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)
|
1198 |
|
1199 |
+
if generate_audio:
|
1200 |
result = self._generate_mel_spec_audio_streaming(
|
1201 |
spk_bounds, streamer, output_chunk_size=25, enable_regenerate=enable_regenerate
|
1202 |
)
|
|
|
1440 |
return mel_spec
|
1441 |
|
1442 |
def _linear_overlap_add2_wav(self, frames: List[torch.Tensor], overlap: int):
|
1443 |
+
"""
|
1444 |
+
Merge two audio waveforms with smooth in streaming audio generation.
|
1445 |
+
Borrowed some codes from `https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py`
|
1446 |
+
"""
|
1447 |
assert len(frames) == 2
|
1448 |
device = frames[0].device
|
1449 |
dtype = frames[0].dtype
|
|
|
1690 |
prev_wav = wav_np[len(prev_wav) :]
|
1691 |
cur_text = gen_text_raw[prev_text_len:]
|
1692 |
prev_text_len = len(gen_text_raw)
|
1693 |
+
yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)
|
1694 |
+
|
1695 |
else:
|
1696 |
prev_wav = wav_np
|
1697 |
else:
|
|
|
1702 |
) # tts_hop256*2
|
1703 |
cur_text = gen_text_raw[prev_text_len:]
|
1704 |
prev_text_len = len(gen_text_raw)
|
1705 |
+
yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)
|
1706 |
+
|
1707 |
else:
|
1708 |
prev_wav = wav_np
|
1709 |
|
|
|
1801 |
prev_wav = wav_np[len(prev_wav) :]
|
1802 |
cur_text = gen_text_raw[prev_text_len:]
|
1803 |
prev_text_len = len(gen_text_raw)
|
1804 |
+
yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)
|
1805 |
else:
|
1806 |
prev_wav = wav_np
|
1807 |
else:
|
|
|
1812 |
) # tts_hop256*2
|
1813 |
cur_text = gen_text_raw[prev_text_len:]
|
1814 |
prev_text_len = len(gen_text_raw)
|
1815 |
+
yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)
|
1816 |
else:
|
1817 |
prev_wav = wav_np
|
1818 |
|
|
|
1826 |
|
1827 |
if prev_wav is not None:
|
1828 |
cur_text = gen_text_raw[prev_text_len:]
|
1829 |
+
yield OmniOutput(text=cur_text, audio_wav=prev_wav, sampling_rate=sr) # yield last chunk wav without smooth
|
1830 |
|
1831 |
if new_segment_gen and not stop:
|
1832 |
logger.debug(
|
|
|
1860 |
return wav_numpy, sr
|
1861 |
|
1862 |
|
1863 |
+
# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer and add use_cache for streaming inference
|
1864 |
class MiniCPMWhisperEncoderLayer(nn.Module):
|
1865 |
def __init__(self, config: WhisperConfig, layer_idx: int = None):
|
1866 |
super().__init__()
|
|
|
1889 |
past_key_values: Optional[EncoderDecoderCache] = None,
|
1890 |
use_cache: Optional[bool] = False,
|
1891 |
) -> torch.Tensor:
|
1892 |
+
r"""
|
1893 |
+
Args:
|
1894 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, embed_dim)`):
|
1895 |
+
Hidden states to be fed into the encoder layer.
|
1896 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, 1, tgt_len, src_len)`):
|
1897 |
+
Attention mask where padding elements are indicated by large negative values.
|
1898 |
+
layer_head_mask (`torch.FloatTensor` of shape `(encoder_attention_heads,)`):
|
1899 |
+
Mask to nullify selected heads of the attention modules.
|
1900 |
+
output_attentions (`bool`, *optional*):
|
1901 |
+
Whether or not to return the attention weights.
|
1902 |
+
past_key_values (`EncoderDecoderCache`, *optional*):
|
1903 |
+
Past key-value pairs used for incremental decoding.
|
1904 |
+
use_cache (`bool`, *optional*):
|
1905 |
+
Whether or not to return updated `past_key_values` for caching.
|
1906 |
+
|
1907 |
+
Returns:
|
1908 |
+
A tuple of shape `(hidden_states, optional(attn_weights), optional(past_key_values))`.
|
1909 |
+
"""
|
1910 |
residual = hidden_states
|
1911 |
hidden_states = self.self_attn_layer_norm(hidden_states)
|
1912 |
hidden_states, attn_weights, past_key_values = self.self_attn(
|
|
|
1944 |
return outputs
|
1945 |
|
1946 |
|
1947 |
+
# Copied from from transformers.models.whisper.modeling_whisper.WhisperEncoder and add use_cache for streaming inference
|
1948 |
class MiniCPMWhisperEncoder(WhisperEncoder):
|
1949 |
|
1950 |
def __init__(self, config: WhisperConfig):
|
|
|
1964 |
past_key_values: Optional[EncoderDecoderCache] = None,
|
1965 |
use_cache: Optional[bool] = None,
|
1966 |
):
|
1967 |
+
r"""
|
1968 |
+
Forward pass of the Whisper encoder.
|
1969 |
+
|
1970 |
+
Args:
|
1971 |
+
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
1972 |
+
Float values of log-mel features extracted from the raw audio waveform. Typically generated
|
1973 |
+
by a feature extractor (e.g., `WhisperFeatureExtractor`) that processes `.flac` or `.wav`
|
1974 |
+
files into padded 2D mel spectrogram frames. These features are projected via convolution layers
|
1975 |
+
(`conv1` and `conv2`) and then transformed into embeddings for the encoder.
|
1976 |
+
|
1977 |
+
attention_mask (`torch.Tensor`, *optional*):
|
1978 |
+
Not used by Whisper for masking `input_features`, but included for API compatibility with
|
1979 |
+
other models. If provided, it is simply ignored within the model. By default, Whisper
|
1980 |
+
effectively ignores silence in the input log-mel spectrogram.
|
1981 |
+
|
1982 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
1983 |
+
Mask to nullify selected attention heads. The elements should be either 1 or 0, where:
|
1984 |
+
- 1 indicates the head is **not masked**,
|
1985 |
+
- 0 indicates the head is **masked** (i.e., the attention head is dropped).
|
1986 |
+
|
1987 |
+
output_attentions (`bool`, *optional*):
|
1988 |
+
Whether or not to return the attention tensors of all encoder layers. If set to `True`, the
|
1989 |
+
returned tuple (or `BaseModelOutputWithPast`) will contain an additional element with
|
1990 |
+
attention weights for each encoder layer.
|
1991 |
+
|
1992 |
+
output_hidden_states (`bool`, *optional*):
|
1993 |
+
Whether or not to return the hidden states of all layers. If set to `True`, the returned
|
1994 |
+
tuple (or `BaseModelOutputWithPast`) will contain a tuple of hidden states, including the
|
1995 |
+
initial embedding output as well as the outputs of each layer.
|
1996 |
+
|
1997 |
+
return_dict (`bool`, *optional*):
|
1998 |
+
Whether or not to return a `BaseModelOutputWithPast` (a subclass of `ModelOutput`) instead
|
1999 |
+
of a plain tuple. If set to `True`, the output will be a `BaseModelOutputWithPast` object,
|
2000 |
+
otherwise it will be a tuple.
|
2001 |
+
|
2002 |
+
past_key_values (`EncoderDecoderCache`, *optional*):
|
2003 |
+
When using caching for faster inference, this is an object that stores the key-value pairs
|
2004 |
+
for attention states. If provided, the model will append new states to the existing cache
|
2005 |
+
and return the updated cache. This speeds up sequential decoding or chunked inference.
|
2006 |
+
|
2007 |
+
- If `past_key_values` is `None`, no past states are used or returned.
|
2008 |
+
- If `past_key_values` is not `None` and `use_cache=True`, the model will use the provided
|
2009 |
+
cache and return the updated cache (as `next_encoder_cache`).
|
2010 |
+
|
2011 |
+
use_cache (`bool`, *optional*):
|
2012 |
+
Whether or not the model should use caching (`past_key_values`) to speed up processing
|
2013 |
+
during inference. When set to `True`, the model will:
|
2014 |
+
- Inspect and use `past_key_values` if provided.
|
2015 |
+
- Return updated `past_key_values` (under the name `next_encoder_cache` in
|
2016 |
+
`BaseModelOutputWithPast`).
|
2017 |
+
|
2018 |
+
Returns:
|
2019 |
+
`BaseModelOutputWithPast` or `tuple` (depending on `return_dict`):
|
2020 |
+
If `return_dict=True`, a `BaseModelOutputWithPast` is returned, which contains:
|
2021 |
+
- **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
2022 |
+
The output of the final encoder layer.
|
2023 |
+
- **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_hidden_states=True`):
|
2024 |
+
Hidden states of the model at each layer (including the initial projection).
|
2025 |
+
- **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_attentions=True`):
|
2026 |
+
Attention weights from each encoder layer.
|
2027 |
+
- **past_key_values** (an object of type `EncoderDecoderCache` or `None`, *optional*):
|
2028 |
+
Updated cache of key-value pairs if `use_cache=True`.
|
2029 |
+
|
2030 |
+
If `return_dict=False`, a tuple is returned, where the format is:
|
2031 |
+
`(last_hidden_state, hidden_states, attentions)`, with `hidden_states` and `attentions`
|
2032 |
+
only present if their respective `output_*` arguments are set to `True`.
|
2033 |
+
|
2034 |
+
Example:
|
2035 |
+
>>> from transformers import AutoFeatureExtractor, WhisperConfig, WhisperForConditionalGeneration
|
2036 |
+
>>> import torch
|
2037 |
+
|
2038 |
+
>>> # Load a feature extractor and a Whisper model
|
2039 |
+
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny.en")
|
2040 |
+
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
2041 |
+
|
2042 |
+
>>> # Assume you have audio (list of floats or numpy array) loaded from a file
|
2043 |
+
>>> # Then extract the mel features:
|
2044 |
+
>>> input_features = feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
2045 |
+
|
2046 |
+
>>> # Forward pass
|
2047 |
+
>>> outputs = model.encoder(
|
2048 |
+
... input_features=input_features,
|
2049 |
+
... output_hidden_states=True,
|
2050 |
+
... output_attentions=True,
|
2051 |
+
... use_cache=True
|
2052 |
+
... )
|
2053 |
+
|
2054 |
+
>>> # Retrieve the last hidden state
|
2055 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
2056 |
+
>>> print(last_hidden_state.shape)
|
2057 |
+
torch.Size([batch_size, seq_length, hidden_size])
|
2058 |
+
|
2059 |
+
>>> # Retrieve the intermediate hidden states if output_hidden_states=True
|
2060 |
+
>>> all_encoder_hidden_states = outputs.hidden_states
|
2061 |
+
|
2062 |
+
>>> # Retrieve attention weights if output_attentions=True
|
2063 |
+
>>> all_encoder_attentions = outputs.attentions
|
2064 |
+
|
2065 |
+
>>> # Retrieve updated past key values if use_cache=True
|
2066 |
+
>>> encoder_cache = outputs.past_key_values
|
2067 |
+
"""
|
2068 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
2069 |
output_hidden_states = (
|
2070 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
2179 |
)
|
2180 |
|
2181 |
|
2182 |
+
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
|
2183 |
class ConvNeXtBlock(nn.Module):
|
2184 |
def __init__(
|
2185 |
self,
|
|
|
2233 |
return x
|
2234 |
|
2235 |
|
2236 |
+
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
|
2237 |
class GFSQ(nn.Module):
|
2238 |
def __init__(
|
2239 |
self,
|
|
|
2276 |
return ind.transpose_(1, 2) if self.transpose else ind
|
2277 |
|
2278 |
|
2279 |
+
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
|
2280 |
class DVAEDecoder(nn.Module):
|
2281 |
def __init__(
|
2282 |
self,
|
|
|
2321 |
return x
|
2322 |
|
2323 |
|
2324 |
+
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
|
2325 |
class DVAE(nn.Module):
|
2326 |
def __init__(
|
2327 |
self,
|
|
|
2400 |
return torch.mul(dec_out, self.coef, out=dec_out)
|
2401 |
|
2402 |
|
|
|
2403 |
def apply_spk_emb(
|
2404 |
input_ids: torch.Tensor = None,
|
2405 |
spk_emb: torch.Tensor = None,
|
|
|
2408 |
num_spk_embs: int = 1,
|
2409 |
):
|
2410 |
"""
|
2411 |
+
Replace consecutive `num_spk_embs` speaker embedding placeholders in input_embeds with pre-prepared speaker embeddings. This is an in-place replacement, no new tensor is created, so no value is returned.
|
2412 |
|
2413 |
Args:
|
2414 |
input_ids (torch.Tensor): Input ID tensor, shape [batch_size, seq_len_max]
|
|
|
2447 |
use_spk_emb: bool = True,
|
2448 |
) -> torch.Tensor:
|
2449 |
"""
|
2450 |
+
In streaming audio generation, determine which `text` positions the TTS model can attend to when generating each chunk of `audio` tokens.
|
2451 |
|
2452 |
This function creates a mask that allows the model to attend to a specific chunk of text
|
2453 |
tokens when generating each chunk of audio tokens, enabling streaming TTS generation.
|
|
|
2504 |
return causal_mask
|
2505 |
|
2506 |
|
2507 |
+
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py`
|
2508 |
class CustomRepetitionPenaltyLogitsProcessorRepeat:
|
2509 |
def __init__(self, penalty: float, max_input_ids: int, past_window: int):
|
2510 |
if not isinstance(penalty, float) or not (penalty > 0):
|
|
|
2563 |
|
2564 |
|
2565 |
class ConditionalChatTTS(PreTrainedModel):
|
2566 |
+
"""A conditional text-to-speech model that can generate speech from text with speaker conditioning.
|
2567 |
+
|
2568 |
+
This model extends PreTrainedModel to provide text-to-speech capabilities with:
|
2569 |
+
- LLM hidden state conditioning
|
2570 |
+
- Streaming generation
|
2571 |
+
|
2572 |
+
The model uses a transformer architecture with LLM hidden states and can operate in both
|
2573 |
+
streaming and non-streaming modes for flexible deployment.
|
2574 |
+
|
2575 |
+
The model process sequence in the following format:
|
2576 |
+
| text bos token | LLM embedding projected to tts embedding space | text tokens (fixed length, reserved for future tokens) | audio bos token | audio tokens (audio token length is not fixed)| audio eos token |
|
2577 |
+
|
2578 |
+
The format is designed to support LLM-conditioned streaming audio generation.
|
2579 |
+
|
2580 |
+
Usage:
|
2581 |
+
To support streaming generation, two global variables should be maintained outside of the model.
|
2582 |
+
1. `audio_input_ids`: stores *discrete* audio codes. It is a tensor with shape [1, sequence length+1, num_vq].
|
2583 |
+
2. `past_key_values`: stores the KV cache for both text tokens and audio codes. It is a list of tuples, each tuple contains two tensors with shape [1, num_attention_heads, sequence length, hidden_size // num_attention_heads]
|
2584 |
+
|
2585 |
+
where `num_vq` is the number of audio codebooks, in default setting, it is `4`.
|
2586 |
+
|
2587 |
+
1. Create an empty `past_key_values` with
|
2588 |
+
```python
|
2589 |
+
initial_kv_cache_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len # where `1` denotes the `bos` token
|
2590 |
+
dtype = model.emb_text.weight.dtype
|
2591 |
+
device = model.emb_text.weight.device
|
2592 |
+
past_key_values = [
|
2593 |
+
(
|
2594 |
+
torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device),
|
2595 |
+
torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device)
|
2596 |
+
)
|
2597 |
+
for _ in range(model.config.num_hidden_layers)
|
2598 |
+
]
|
2599 |
+
|
2600 |
+
2. At the same time, create an empty `audio_input_ids` with shape [1, sequence length, num_vq], `num_vq` denotes multiple layer audio codebooks. But here we also include text tokens in the sequence, but they will be zeros, and will not be used, just a placeholder.
|
2601 |
+
|
2602 |
+
```python
|
2603 |
+
initial_audio_input_ids_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len + 1
|
2604 |
+
# [bos token, speaker embeddings, text tokens, audio bos token]
|
2605 |
+
audio_input_ids = torch.zeros(batch_size=1, initial_audio_input_ids_length, model.num_vq)
|
2606 |
+
```
|
2607 |
+
|
2608 |
+
2. Prefill some text tokens to TTS model (for example, 10 tokens) using `prefill_text` method.
|
2609 |
+
|
2610 |
+
```python
|
2611 |
+
outputs = llm.generate(**kwargs)
|
2612 |
+
llm_tokens = some_function_to_extract_llm_tokens(outputs)
|
2613 |
+
lm_spk_emb_last_hidden_states = some_function_to_extract_lm_spk_emb_last_hidden_states(outputs)
|
2614 |
+
tts_text_input_ids = tts_tokenizer.encode(llm_tokenizer.decode(llm_tokens))
|
2615 |
+
# here assume we are prefilling text token 0 to text token 9 (included), totally 10 tokens.
|
2616 |
+
begin = 0
|
2617 |
+
end = 9+1
|
2618 |
+
position_ids = torch.arange(begin, end, dtype=torch.long, device=device)
|
2619 |
+
|
2620 |
+
past_key_values = model.prefill_text(
|
2621 |
+
input_ids=tts_text_input_ids,
|
2622 |
+
position_ids=position_ids,
|
2623 |
+
past_key_values=past_key_values,
|
2624 |
+
lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
|
2625 |
+
)
|
2626 |
+
```
|
2627 |
+
|
2628 |
+
3. Make a `streaming_tts_text_mask` to denote which position contains valid text tokens, similar to `attention_mask` in standard causal attention.
|
2629 |
+
|
2630 |
+
```python
|
2631 |
+
streaming_tts_text_mask = torch.zeros(model.streaming_reserved_length)
|
2632 |
+
streaming_tts_text_mask[0:end] = 1 # denotes these post
|
2633 |
+
```
|
2634 |
+
|
2635 |
+
3. Generate audio codes using `generate` method.
|
2636 |
+
|
2637 |
+
```python
|
2638 |
+
outputs = model.generate(
|
2639 |
+
input_ids=audio_input_ids,
|
2640 |
+
past_key_values=past_key_values,
|
2641 |
+
streaming_tts_text_mask=streaming_tts_text_mask,
|
2642 |
+
max_new_token=50,
|
2643 |
+
)
|
2644 |
+
|
2645 |
+
# update past_key_values and input_ids
|
2646 |
+
past_key_values = outputs.past_key_values
|
2647 |
+
audio_input_ids = outputs.input_ids
|
2648 |
+
```
|
2649 |
+
|
2650 |
+
The `past_key_values` is extended by `max_new_token=50`, and `audio_input_ids` is also extended by `max_new_token=50` after `generate` calling.
|
2651 |
+
|
2652 |
+
4. Notice that after prefilling `10` text tokens, the model can generate up to `50` audio tokens, if you want to generate more audio tokens, you need to prefill next `10` text tokens. And it is okay to only generate `25` audio tokens for faster initial response.
|
2653 |
+
|
2654 |
+
5. Repeat steps `2,3,4` as needed in your streaming audio generation cases, but ensure usage complies with the following guidelines discussed above.
|
2655 |
+
"""
|
2656 |
+
|
2657 |
config_class = ConditionalChatTTSConfig
|
2658 |
|
2659 |
def __init__(self, config: ConditionalChatTTSConfig):
|
|
|
2711 |
self.model = model
|
2712 |
|
2713 |
@torch.inference_mode()
|
2714 |
+
def merge_inputs_embeds(
|
2715 |
self,
|
2716 |
input_ids: torch.Tensor,
|
2717 |
lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
|
|
|
2718 |
):
|
2719 |
+
"""Merge `input_ids` and `lm_spk_emb_last_hidden_states` to `inputs_embeds`.
|
|
|
2720 |
|
2721 |
Args:
|
2722 |
input_ids (torch.Tensor): Input token IDs.
|
2723 |
lm_spk_emb_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states of speaker embeddings from the language model. Defaults to None.
|
|
|
2724 |
|
2725 |
Raises:
|
2726 |
NotImplementedError: If speaker embedding is not used and language model hidden states are not implemented.
|
|
|
2750 |
num_spk_embs=self.num_spk_embs,
|
2751 |
)
|
2752 |
else:
|
|
|
|
|
2753 |
raise NotImplementedError
|
2754 |
|
2755 |
return inputs_embeds
|
|
|
2761 |
position_ids: torch.LongTensor,
|
2762 |
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
|
2763 |
lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
|
|
|
2764 |
):
|
2765 |
"""Prefill a chunk of new text tokens in streaming setting.
|
2766 |
+
Specifically speaking, update `past_key_values` using new text tokens, then the model will read the new text tokens.
|
2767 |
|
2768 |
Args:
|
2769 |
input_ids (Tensor): Tensor of shape [batch_size, seq_len]
|
|
|
2777 |
assert input_ids.shape[0] == 1
|
2778 |
assert past_key_values is not None
|
2779 |
|
2780 |
+
# Merge text and LLM embeddings
|
2781 |
+
inputs_embeds = self.merge_inputs_embeds(
|
2782 |
input_ids=input_ids,
|
2783 |
lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
|
|
|
2784 |
)
|
2785 |
|
2786 |
# Clone KV Cache
|
|
|
2807 |
# Get model updated KV Cache
|
2808 |
past_key_values_for_prefill_updated = outputs_prefill.past_key_values
|
2809 |
|
2810 |
+
# Update generated KV Cache to input `past_key_values`
|
2811 |
for layer_idx in range(len(past_key_values)):
|
2812 |
# Update keys
|
2813 |
past_key_values[layer_idx][0][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
|
|
|
2835 |
streaming_tts_text_mask=None,
|
2836 |
add_audio_bos: bool = True,
|
2837 |
):
|
2838 |
+
"""Prefill a chunk of audio ids to the model. Used in sliding-window long audio generation.
|
2839 |
+
Specifically, prefill many audio ids (typically from last window) to the model in the new window.
|
2840 |
+
|
2841 |
Args:
|
2842 |
input_ids (torch.Tensor): (1, seq_len, num_vq) Audio input token ids.
|
2843 |
past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
|
|
|
2867 |
streaming_tts_text_mask=streaming_tts_text_mask,
|
2868 |
streaming_reserved_length=self.streaming_text_reserved_len,
|
2869 |
streaming_text_chunk_size=self.streaming_text_chunk_size,
|
2870 |
+
) # [1, 1, 1, past_key_values_length + input_len]
|
2871 |
|
2872 |
# Model forward
|
2873 |
outputs: BaseModelOutputWithPast = self.model(
|
|
|
2897 |
logits_processors: List[CustomRepetitionPenaltyLogitsProcessorRepeat] = [],
|
2898 |
show_tqdm=False,
|
2899 |
):
|
2900 |
+
"""Generate audio codes in streaming setting or non-streaming setting.
|
2901 |
Specifically speaking, generate audio codes when not all text tokens are prefilled.
|
2902 |
|
2903 |
+
Always pass a valid `past_key_values` to the method. The method does not do `prefill` by itself. It relies on `prefill_text` method to provide valid `past_key_values`. Please refer to docstring of this class for more details.
|
|
|
2904 |
|
2905 |
+
In this method, we borrowed a lot of codes from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/gpt.py`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2906 |
|
2907 |
Args:
|
2908 |
input_ids (torch.Tensor): Input token ids.
|
|
|
2914 |
logits_warpers (List[LogitsWarper], optional): List of logits warpers. Defaults to [].
|
2915 |
logits_processors (List[CustomRepetitionPenaltyLogitsProcessorRepeat], optional): List of logits processors. Defaults to [].
|
2916 |
show_tqdm (bool, optional): Whether to show progress bar. Defaults to True.
|
2917 |
+
|
|
|
2918 |
Returns:
|
2919 |
GenerationOutputs: Generation outputs.
|
2920 |
"""
|
|
|
2942 |
device=input_ids.device,
|
2943 |
)
|
2944 |
|
2945 |
+
# Copy existing `input_ids` to `input_ids_buf`
|
2946 |
input_ids_buf.narrow(1, 0, progress).copy_(input_ids)
|
2947 |
|
2948 |
del input_ids
|
|
|
2961 |
for i in range(max_new_token):
|
2962 |
# Prepare generation inputs
|
2963 |
audio_bos = False
|
2964 |
+
|
2965 |
+
# If this is the first audio token, the case is SPECIAL
|
2966 |
if progress == condition_length:
|
2967 |
audio_bos = True
|
2968 |
|
2969 |
+
assert progress == (
|
2970 |
+
past_key_values[0][0].shape[2] + 1
|
2971 |
+
) # If you are using according to the guidelines, this should be passed.
|
2972 |
+
|
2973 |
if audio_bos:
|
2974 |
+
# Generate the first token, activate the model with `self.audio_bos_token_id`, the model will predict a new audio token. This is a special case because without the `audio bos token`, it is impossible to generate the first audio token in our streaming setting.
|
|
|
2975 |
narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
|
2976 |
inputs_embeds = self.emb_text(narrowed_input_ids)
|
2977 |
del narrowed_input_ids
|
2978 |
else:
|
2979 |
+
# Generate the following audio tokens, it is applicable to all other cases, including second and the following calling of `generate`.
|
|
|
2980 |
narrowed_input_ids = input_ids.narrow(dim=1, start=input_ids.shape[1] - 1, length=1)
|
2981 |
code_emb = [self.emb_code[i](narrowed_input_ids[:, :, i]) for i in range(self.num_vq)]
|
2982 |
inputs_embeds = torch.stack(code_emb, 3).sum(3)
|
|
|
2986 |
).unsqueeze(0)
|
2987 |
|
2988 |
cache_position = position_ids.clone()
|
2989 |
+
|
2990 |
+
# Make causal mask
|
2991 |
causal_mask = make_streaming_chunk_mask_generation(
|
2992 |
inputs_embeds=inputs_embeds,
|
2993 |
past_seen_tokens=past_key_values[0][0].shape[2],
|
|
|
3079 |
finish.logical_or_(finish_or)
|
3080 |
|
3081 |
del finish_or
|
3082 |
+
# Store new `token` into `input_ids_buf`
|
3083 |
input_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1))
|
3084 |
|
3085 |
if i == 0 and finish.any():
|
|
|
3123 |
def decode_to_mel_specs(
|
3124 |
self,
|
3125 |
result_list: List[torch.Tensor],
|
|
|
3126 |
):
|
3127 |
+
"""Decode discrete audio codes to mel spectrograms.
|
3128 |
+
|
3129 |
+
Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/core.py`
|
3130 |
+
|
3131 |
+
Args:
|
3132 |
+
result_list (List[torch.Tensor]): Audio codes output from `generate`.
|
3133 |
+
|
3134 |
+
Returns:
|
3135 |
+
torch.Tensor: Mel spectrograms.
|
3136 |
+
"""
|
3137 |
+
|
3138 |
decoder = self.dvae
|
3139 |
max_x_len = -1
|
3140 |
if len(result_list) == 0:
|
|
|
3157 |
return mel_specs
|
3158 |
|
3159 |
|
3160 |
+
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py`
|
3161 |
def gen_logits(
|
3162 |
num_code: int,
|
3163 |
top_P=0.7,
|
modeling_navit_siglip.py
CHANGED
@@ -851,6 +851,7 @@ class SiglipVisionTransformer(SiglipPreTrainedModel):
|
|
851 |
config_class = SiglipVisionConfig
|
852 |
main_input_name = "pixel_values"
|
853 |
_supports_flash_attn_2 = True
|
|
|
854 |
|
855 |
def __init__(self, config: SiglipVisionConfig):
|
856 |
super().__init__(config)
|
|
|
851 |
config_class = SiglipVisionConfig
|
852 |
main_input_name = "pixel_values"
|
853 |
_supports_flash_attn_2 = True
|
854 |
+
_no_split_modules = []
|
855 |
|
856 |
def __init__(self, config: SiglipVisionConfig):
|
857 |
super().__init__(config)
|
processing_minicpmo.py
CHANGED
@@ -309,8 +309,10 @@ class MiniCPMOProcessor(ProcessorMixin):
|
|
309 |
)
|
310 |
return MiniCPMOBatchFeature(data={**model_inputs})
|
311 |
|
312 |
-
|
313 |
-
|
|
|
|
|
314 |
split_pattern = f"({image_pattern}|{audio_pattern})"
|
315 |
|
316 |
if isinstance(texts, str):
|
@@ -343,13 +345,13 @@ class MiniCPMOProcessor(ProcessorMixin):
|
|
343 |
image_id = 0
|
344 |
audio_id = 0
|
345 |
for i, chunk in enumerate(text_chunks):
|
346 |
-
if chunk ==
|
347 |
image_placeholder = self.image_processor.get_slice_image_placeholder(
|
348 |
image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
|
349 |
)
|
350 |
image_id += 1
|
351 |
text_chunks[i] = image_placeholder
|
352 |
-
elif chunk ==
|
353 |
audio_placeholder = audio_phs[index][audio_id]
|
354 |
audio_id += 1
|
355 |
text_chunks[i] = audio_placeholder
|
@@ -494,9 +496,6 @@ class ChatTTSProcessor:
|
|
494 |
try:
|
495 |
mel = self.audio_processor(audio) # [100(num_mel_bins), seq_len_mel]
|
496 |
except Exception as e:
|
497 |
-
print(
|
498 |
-
"fuck! there is an error with audio waveform. If you use a dataset __getitem__, will skip and use next data as compensate, will not halt training."
|
499 |
-
)
|
500 |
raise e
|
501 |
audio_features_varlen.append(mel)
|
502 |
|
|
|
309 |
)
|
310 |
return MiniCPMOBatchFeature(data={**model_inputs})
|
311 |
|
312 |
+
image_tag = "(<image>./</image>)"
|
313 |
+
image_pattern = "\(<image>./</image>\)"
|
314 |
+
audio_tag = "(<audio>./</audio>)"
|
315 |
+
audio_pattern = "\(<audio>./</audio>\)"
|
316 |
split_pattern = f"({image_pattern}|{audio_pattern})"
|
317 |
|
318 |
if isinstance(texts, str):
|
|
|
345 |
image_id = 0
|
346 |
audio_id = 0
|
347 |
for i, chunk in enumerate(text_chunks):
|
348 |
+
if chunk == image_tag:
|
349 |
image_placeholder = self.image_processor.get_slice_image_placeholder(
|
350 |
image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
|
351 |
)
|
352 |
image_id += 1
|
353 |
text_chunks[i] = image_placeholder
|
354 |
+
elif chunk == audio_tag:
|
355 |
audio_placeholder = audio_phs[index][audio_id]
|
356 |
audio_id += 1
|
357 |
text_chunks[i] = audio_placeholder
|
|
|
496 |
try:
|
497 |
mel = self.audio_processor(audio) # [100(num_mel_bins), seq_len_mel]
|
498 |
except Exception as e:
|
|
|
|
|
|
|
499 |
raise e
|
500 |
audio_features_varlen.append(mel)
|
501 |
|
utils.py
CHANGED
@@ -13,8 +13,8 @@
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
|
16 |
-
import re
|
17 |
import logging
|
|
|
18 |
|
19 |
import librosa
|
20 |
import numpy as np
|
@@ -42,6 +42,28 @@ def sentence_end(txt):
|
|
42 |
|
43 |
|
44 |
class NumberToTextConverter:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def __init__(self):
|
46 |
self.num_to_chinese = {
|
47 |
"0": "零",
|
@@ -103,6 +125,31 @@ class NumberToTextConverter:
|
|
103 |
|
104 |
|
105 |
class VoiceChecker:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def __init__(self):
|
107 |
self.previous_mel = None
|
108 |
self.consecutive_zeros = 0
|
@@ -129,7 +176,9 @@ class VoiceChecker:
|
|
129 |
mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]
|
130 |
|
131 |
distance = self.compute_distance(audio_chunk, mel_spec_chunk)
|
132 |
-
logger.warning(
|
|
|
|
|
133 |
if distance == 0:
|
134 |
self.consecutive_low_distance = 0 # reset
|
135 |
self.consecutive_zeros += 1
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
|
|
|
16 |
import logging
|
17 |
+
import re
|
18 |
|
19 |
import librosa
|
20 |
import numpy as np
|
|
|
42 |
|
43 |
|
44 |
class NumberToTextConverter:
|
45 |
+
r"""
|
46 |
+
A helper class to ensure text-to-speech (TTS) systems read numeric digits
|
47 |
+
in the desired language (Chinese or English) digit-by-digit. It forcibly
|
48 |
+
replaces all numeric substrings in text with their language-specific
|
49 |
+
textual representations, thereby reducing the likelihood of TTS mistakes
|
50 |
+
on numbers.
|
51 |
+
Note: MiniCPM-o 2.6 only use this in streaming mode.
|
52 |
+
|
53 |
+
Attributes:
|
54 |
+
num_to_chinese (dict):
|
55 |
+
Mapping from digit (str) to its Chinese textual form (str).
|
56 |
+
num_to_english (dict):
|
57 |
+
Mapping from digit (str) to its English textual form (str).
|
58 |
+
|
59 |
+
Example:
|
60 |
+
>>> converter = NumberToTextConverter()
|
61 |
+
>>> converter.replace_numbers_with_text("我有2个苹果", language="chinese")
|
62 |
+
'我有两个苹果'
|
63 |
+
>>> converter.replace_numbers_with_text("I have 23 books", language="english")
|
64 |
+
'I have two three books'
|
65 |
+
"""
|
66 |
+
|
67 |
def __init__(self):
|
68 |
self.num_to_chinese = {
|
69 |
"0": "零",
|
|
|
125 |
|
126 |
|
127 |
class VoiceChecker:
|
128 |
+
r"""
|
129 |
+
A simple utility class to detect silence or low variation in consecutive audio chunks by comparing
|
130 |
+
the mel-spectrogram distances. It keeps track of consecutive zero-distance and low-distance chunks
|
131 |
+
to decide if the audio is considered "bad" (e.g., overly silent or not changing enough).
|
132 |
+
|
133 |
+
Attributes:
|
134 |
+
previous_mel (`np.ndarray` or `None`):
|
135 |
+
Holds the previously observed mel-spectrogram in decibel scale. Used to compute
|
136 |
+
the next distance; reset via :meth:`reset`.
|
137 |
+
consecutive_zeros (`int`):
|
138 |
+
The number of consecutive chunks that were detected as silent (distance = 0).
|
139 |
+
consecutive_low_distance (`int`):
|
140 |
+
The number of consecutive chunks whose distance was below the threshold.
|
141 |
+
|
142 |
+
Example:
|
143 |
+
>>> checker = VoiceChecker()
|
144 |
+
>>> # Suppose we have audio_wav (list or np.ndarray) and mel_spec (np.ndarray)
|
145 |
+
>>> # We split them into chunks and call checker.is_bad(...)
|
146 |
+
>>> is_audio_bad = checker.is_bad(audio_wav, mel_spec, chunk_size=2560, thresh=100.0)
|
147 |
+
>>> if is_audio_bad:
|
148 |
+
... print("Audio deemed bad!")
|
149 |
+
>>> # Reset states if needed
|
150 |
+
>>> checker.reset()
|
151 |
+
"""
|
152 |
+
|
153 |
def __init__(self):
|
154 |
self.previous_mel = None
|
155 |
self.consecutive_zeros = 0
|
|
|
176 |
mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]
|
177 |
|
178 |
distance = self.compute_distance(audio_chunk, mel_spec_chunk)
|
179 |
+
logger.warning(
|
180 |
+
f"mel dist: {distance:.1f}, zero: {self.consecutive_zeros}, low: {self.consecutive_low_distance}"
|
181 |
+
)
|
182 |
if distance == 0:
|
183 |
self.consecutive_low_distance = 0 # reset
|
184 |
self.consecutive_zeros += 1
|