File size: 20,123 Bytes
c248f01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MiniCPMO.
"""
import math
import re
from typing import List
from typing import Literal
from typing import Optional
from typing import Union
import numpy as np
import torch
import torchaudio
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PreTokenizedInput
from transformers.tokenization_utils_base import TextInput
from transformers.utils import TensorType
from .image_processing_minicpmv import MiniCPMOBatchFeature
class MiniCPMOProcessor(ProcessorMixin):
r"""
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
Args:
image_processor ([`MiniCPMVImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "feature_extractor", "tokenizer"]
feature_extractor_class = "WhisperFeatureExtractor"
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None):
super().__init__(image_processor, feature_extractor, tokenizer)
self.version = image_processor.version
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
images: ImageInput = None,
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]] = None,
audio_parts: Optional[list] = None,
max_length: Optional[int] = None,
do_pad: Optional[bool] = True,
max_slice_nums: int = None,
use_image_id: bool = True,
chunk_input: bool = False,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
sampling_rate: Optional[int] = 16000,
**kwargs,
) -> MiniCPMOBatchFeature:
if images is not None:
image_inputs = self.image_processor(
images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors
)
else:
image_inputs = None
if audios is not None:
audio_features, audio_feature_lens, audio_phs = self.audio_feature_extract(
audios, audio_parts, chunk_input, sampling_rate
)
else:
audio_features, audio_feature_lens, audio_phs = [], [], []
model_inputs = self._convert_omni_to_inputs(
image_inputs,
audio_phs,
text,
max_slice_nums=max_slice_nums,
use_image_id=use_image_id,
max_length=max_length,
**kwargs,
)
model_inputs["audio_features"] = audio_features
model_inputs["audio_feature_lens"] = audio_feature_lens
return MiniCPMOBatchFeature(data={**model_inputs})
def audio_feature_extract(
self,
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]],
audio_parts: Optional[list] = None,
chunk_input: Optional[bool] = False,
sampling_rate: Optional[int] = None,
chunk_length: Optional[int] = 1,
**kwargs,
):
def get_audio_placeholder(audio_lens, chunk_input):
pool_step = 2
feature_lens = math.ceil(audio_lens / self.feature_extractor.hop_length)
feature_lens = (feature_lens - 1) // 2 + 1
output_lens = (feature_lens - pool_step) // pool_step + 1
if chunk_input:
fbank_feat_in_chunk = int(chunk_length * 100)
cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1
audio_embeds_in_chunk = (cnn_feat_in_chunk - pool_step) // pool_step + 1
num_audio_chunks = (output_lens + audio_embeds_in_chunk - 1) // audio_embeds_in_chunk
place_holders = ""
total_unk_len = 0
for _ in range(num_audio_chunks):
unk_len = min(audio_embeds_in_chunk, output_lens - total_unk_len)
place_holders += self.tokenizer.audio_start + "<unk>" * unk_len + self.tokenizer.audio_end
total_unk_len += unk_len
audio_placeholder = place_holders
else:
audio_placeholder = self.tokenizer.audio_start + "<unk>" * output_lens + self.tokenizer.audio_end
return audio_placeholder
if isinstance(audios, np.ndarray):
audios_list = [[audios]]
elif isinstance(audios[0], np.ndarray):
audios_list = [audios]
else:
audios_list = audios
if audio_parts is not None:
assert len(audio_parts) == len(audios_list)
for parts, audios in zip(audio_parts, audios_list):
assert len(parts) == len(audios)
audio_feature_lens_list = []
audio_ph_list = []
audio_features_all = []
# audio placeholder not dependent on audio_parts
for audios in audios_list:
if audios:
audio_ph_list.append([get_audio_placeholder(len(a), chunk_input) for a in audios])
else:
audio_ph_list.append([])
for idx, audios in enumerate(audios_list):
if audio_parts is not None:
# same audio part merge
audio_part = audio_parts[idx]
merge_audio = []
cur_audio = []
for aid, (part, audio) in enumerate(zip(audio_part, audios)):
if aid == 0 or audio_part[aid] == audio_part[aid - 1]:
cur_audio.append(audio)
else:
merge_audio.append(np.hstack(cur_audio))
cur_audio = [audio]
if cur_audio:
merge_audio.append(np.hstack(cur_audio))
else:
merge_audio = audios
audio_feature_lens = []
# If the audio exceeds 30 seconds, split it into chunks every 30 seconds.
final_merge_audio = []
max_audio_inp_len = 30 * sampling_rate
for audio in merge_audio:
if len(audio) <= max_audio_inp_len:
final_merge_audio.append(audio)
else:
for i in range(math.ceil(len(audio) / max_audio_inp_len)):
final_merge_audio.append(audio[i * max_audio_inp_len : (i + 1) * max_audio_inp_len])
if audios:
audio_inputs = self.feature_extractor(
final_merge_audio,
sampling_rate=sampling_rate,
return_attention_mask=True,
padding="max_length",
return_tensors="pt",
**kwargs,
)
audio_feature = audio_inputs["input_features"]
actual_lens = audio_inputs["attention_mask"].sum(dim=1)
for feat, lens in zip(audio_feature, actual_lens):
audio_features_all.append(feat[:, :lens])
audio_feature_lens.append(lens)
audio_feature_lens = torch.hstack(audio_feature_lens)
audio_feature_lens_list.append(audio_feature_lens)
else:
audio_feature_lens_list.append([])
if audio_features_all:
audio_features = [i.permute(1, 0) for i in audio_features_all]
audio_features = torch.nn.utils.rnn.pad_sequence(
audio_features, batch_first=True, padding_value=0.0
).permute(0, 2, 1)
else:
audio_features = []
return audio_features, audio_feature_lens_list, audio_ph_list
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
output_ids = args[0]
result_text = []
for result in output_ids:
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id:
result = result[:-1]
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
return result_text
# return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
result = args[0]
result = result[result != 0]
if result[0] == self.tokenizer.bos_id:
result = result[1:]
if result[-1] == self.tokenizer.eos_id or (
hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id
):
result = result[:-1]
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
def _convert(self, input_str, max_inp_length: Optional[int] = None, **kwargs):
input_ids = self.tokenizer.encode(input_str, **kwargs)
if max_inp_length is not None:
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
## image bound
start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
image_start_idx = torch.where(start_cond)[0]
image_start_idx += 1
image_end_idx = torch.where(end_cond)[0]
valid_image_nums = max(len(image_start_idx), len(image_end_idx))
image_bounds = torch.hstack(
[
image_start_idx[:valid_image_nums].unsqueeze(-1),
image_end_idx[:valid_image_nums].unsqueeze(-1),
]
)
## audio bound
audio_start_idx = torch.where(input_ids == self.tokenizer.audio_start_id)[0]
audio_end_idx = torch.where(input_ids == self.tokenizer.audio_end_id)[0]
assert len(audio_start_idx) == len(audio_end_idx)
audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
spk_start_idx = torch.where(input_ids == self.tokenizer.spk_start_id)[0]
spk_end_idx = torch.where(input_ids == self.tokenizer.spk_end_id)[0]
assert len(spk_start_idx) == len(spk_end_idx)
spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
return input_ids, image_bounds, audio_bounds, spk_bounds
def _convert_omni_to_inputs(
self,
images,
audio_phs,
texts: Union[str, List[str]],
truncation=None,
max_length=None,
max_slice_nums=None,
use_image_id=None,
return_tensors=None,
**kwargs,
):
if images is None and audio_phs is None:
model_inputs = self.tokenizer(
texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs
)
return MiniCPMOBatchFeature(data={**model_inputs})
image_pattern = "<image>./</image>"
audio_pattern = "<audio>./</audio>"
split_pattern = f"({image_pattern}|{audio_pattern})"
if isinstance(texts, str):
texts = [texts]
bs = len(texts)
if images is not None:
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
else:
images, image_sizes, tgt_sizes = [[]] * bs, [[]] * bs, [[]] * bs
input_ids_list = []
image_bounds_list = []
audio_bounds_list = []
spk_bounds_list = []
for index, text in enumerate(texts):
text_chunks = re.split(split_pattern, text)
image_tags = re.findall(image_pattern, text)
audio_tags = re.findall(audio_pattern, text)
if image_tags:
assert images is not None
assert len(image_tags) == len(image_sizes[index])
if audio_tags:
assert audio_phs is not None
assert len(audio_tags) == len(audio_phs[index])
image_id = 0
audio_id = 0
for i, chunk in enumerate(text_chunks):
if chunk == image_pattern:
image_placeholder = self.image_processor.get_slice_image_placeholder(
image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
)
image_id += 1
text_chunks[i] = image_placeholder
elif chunk == audio_pattern:
audio_placeholder = audio_phs[index][audio_id]
audio_id += 1
text_chunks[i] = audio_placeholder
final_text = "".join(text_chunks)
input_ids, image_bounds, audio_bounds, spk_bounds = self._convert(final_text, max_length, **kwargs)
input_ids_list.append(input_ids)
image_bounds_list.append(image_bounds)
audio_bounds_list.append(audio_bounds)
spk_bounds_list.append(spk_bounds)
padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left")
attention_mask = torch.ones_like(padded_input_ids, dtype=torch.bool)
for i, length in enumerate(padding_lengths):
image_bounds_list[i] = image_bounds_list[i] + length
audio_bounds_list[i] = audio_bounds_list[i] + length
spk_bounds_list[i] = spk_bounds_list[i] + length
attention_mask[i, :length] = False
data = {
"input_ids": padded_input_ids,
"attention_mask": attention_mask,
"pixel_values": images,
"image_sizes": image_sizes,
"image_bound": image_bounds_list,
"tgt_sizes": tgt_sizes,
"audio_bounds": audio_bounds_list,
"spk_bounds": spk_bounds_list,
}
return data
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + feature_extractor_input_names))
def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
items = []
if isinstance(inputs[0], list):
assert isinstance(inputs[0][0], torch.Tensor)
for it in inputs:
for tr in it:
items.append(tr)
else:
assert isinstance(inputs[0], torch.Tensor)
items = inputs
batch_size = len(items)
shape = items[0].shape
dim = len(shape)
assert dim <= 2
if max_length is None:
max_length = 0
max_length = max(max_length, max(item.shape[-1] for item in items))
min_length = min(item.shape[-1] for item in items)
dtype = items[0].dtype
if dim == 0:
return torch.stack([item for item in items], dim=0), [0]
elif dim == 1:
if max_length == min_length:
return torch.stack([item for item in items], dim=0), [0] * batch_size
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
else:
tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value
padding_length = []
for i, item in enumerate(items):
if dim == 1:
if padding_side == "left":
tensor[i, -len(item) :] = item.clone()
else:
tensor[i, : len(item)] = item.clone()
elif dim == 2:
if padding_side == "left":
tensor[i, -len(item) :, :] = item.clone()
else:
tensor[i, : len(item), :] = item.clone()
padding_length.append(tensor.shape[-1] - len(item))
return tensor, padding_length
class MelSpectrogramFeatures(torch.nn.Module):
def __init__(
self,
sample_rate=24000,
n_fft=1024,
hop_length=256,
n_mels=100,
padding: Literal["center", "same"] = "center",
):
super().__init__()
if padding not in ["center", "same"]:
raise ValueError("Padding must be 'center' or 'same'.")
self.padding = padding
self.mel_spec = torchaudio.transforms.MelSpectrogram(
sample_rate=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
n_mels=n_mels,
center=padding == "center",
power=1,
)
def __call__(self, audio: torch.Tensor) -> torch.Tensor:
"""
audio: Tensor([num_channels, num_samples])
"""
return super().__call__(audio)
def forward(self, audio: torch.Tensor) -> torch.Tensor:
"""
audio: Tensor([num_channels, num_samples])
"""
mel: torch.Tensor = self.mel_spec(audio)
features = torch.log(torch.clip(mel, min=1e-5))
return features
class ChatTTSProcessor:
def __init__(self, text_tokenizer):
self.audio_processor = MelSpectrogramFeatures()
self.text_tokenizer = text_tokenizer
def __call__(self, text_list, audio_list):
assert len(text_list) == len(audio_list)
input_ids_varlen = []
for text in text_list:
input_ids_ = self.text_tokenizer.encode(text, return_tensors="pt", add_special_tokens=False) # [1, seq_len]
input_ids_ = input_ids_.squeeze(0) # [seq_len]
input_ids_varlen.append(input_ids_)
audio_features_varlen = []
for audio in audio_list:
assert audio.shape.__len__() == 1 # [seq_len]
try:
mel = self.audio_processor(audio) # [100(num_mel_bins), seq_len_mel]
except Exception as e:
print(
"fuck! there is an error with audio waveform. If you use a dataset __getitem__, will skip and use next data as compensate, will not halt training."
)
raise e
audio_features_varlen.append(mel)
return {
"tts_input_ids_varlen": input_ids_varlen, # return List[Tensor]
"tts_input_features_varlen": audio_features_varlen, # return List[Tensor]
}
|