File size: 20,123 Bytes
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MiniCPMO.
"""

import math
import re
from typing import List
from typing import Literal
from typing import Optional
from typing import Union

import numpy as np
import torch
import torchaudio
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PreTokenizedInput
from transformers.tokenization_utils_base import TextInput
from transformers.utils import TensorType

from .image_processing_minicpmv import MiniCPMOBatchFeature


class MiniCPMOProcessor(ProcessorMixin):
    r"""
    Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.

    [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
    [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.

    Args:
        image_processor ([`MiniCPMVImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerWrapper`], *optional*):
            The tokenizer is a required input.
    """

    attributes = ["image_processor", "feature_extractor", "tokenizer"]
    feature_extractor_class = "WhisperFeatureExtractor"
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None):
        super().__init__(image_processor, feature_extractor, tokenizer)
        self.version = image_processor.version

    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
        images: ImageInput = None,
        audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]] = None,
        audio_parts: Optional[list] = None,
        max_length: Optional[int] = None,
        do_pad: Optional[bool] = True,
        max_slice_nums: int = None,
        use_image_id: bool = True,
        chunk_input: bool = False,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
        sampling_rate: Optional[int] = 16000,
        **kwargs,
    ) -> MiniCPMOBatchFeature:
        if images is not None:
            image_inputs = self.image_processor(
                images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors
            )
        else:
            image_inputs = None

        if audios is not None:
            audio_features, audio_feature_lens, audio_phs = self.audio_feature_extract(
                audios, audio_parts, chunk_input, sampling_rate
            )
        else:
            audio_features, audio_feature_lens, audio_phs = [], [], []

        model_inputs = self._convert_omni_to_inputs(
            image_inputs,
            audio_phs,
            text,
            max_slice_nums=max_slice_nums,
            use_image_id=use_image_id,
            max_length=max_length,
            **kwargs,
        )

        model_inputs["audio_features"] = audio_features
        model_inputs["audio_feature_lens"] = audio_feature_lens

        return MiniCPMOBatchFeature(data={**model_inputs})

    def audio_feature_extract(
        self,
        audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]],
        audio_parts: Optional[list] = None,
        chunk_input: Optional[bool] = False,
        sampling_rate: Optional[int] = None,
        chunk_length: Optional[int] = 1,
        **kwargs,
    ):
        def get_audio_placeholder(audio_lens, chunk_input):
            pool_step = 2
            feature_lens = math.ceil(audio_lens / self.feature_extractor.hop_length)

            feature_lens = (feature_lens - 1) // 2 + 1
            output_lens = (feature_lens - pool_step) // pool_step + 1

            if chunk_input:
                fbank_feat_in_chunk = int(chunk_length * 100)
                cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1
                audio_embeds_in_chunk = (cnn_feat_in_chunk - pool_step) // pool_step + 1
                num_audio_chunks = (output_lens + audio_embeds_in_chunk - 1) // audio_embeds_in_chunk

                place_holders = ""
                total_unk_len = 0
                for _ in range(num_audio_chunks):
                    unk_len = min(audio_embeds_in_chunk, output_lens - total_unk_len)
                    place_holders += self.tokenizer.audio_start + "<unk>" * unk_len + self.tokenizer.audio_end
                    total_unk_len += unk_len
                audio_placeholder = place_holders
            else:
                audio_placeholder = self.tokenizer.audio_start + "<unk>" * output_lens + self.tokenizer.audio_end

            return audio_placeholder

        if isinstance(audios, np.ndarray):
            audios_list = [[audios]]
        elif isinstance(audios[0], np.ndarray):
            audios_list = [audios]
        else:
            audios_list = audios

        if audio_parts is not None:
            assert len(audio_parts) == len(audios_list)
            for parts, audios in zip(audio_parts, audios_list):
                assert len(parts) == len(audios)

        audio_feature_lens_list = []
        audio_ph_list = []

        audio_features_all = []

        # audio placeholder not dependent on audio_parts
        for audios in audios_list:
            if audios:
                audio_ph_list.append([get_audio_placeholder(len(a), chunk_input) for a in audios])
            else:
                audio_ph_list.append([])

        for idx, audios in enumerate(audios_list):
            if audio_parts is not None:
                # same audio part merge
                audio_part = audio_parts[idx]
                merge_audio = []
                cur_audio = []
                for aid, (part, audio) in enumerate(zip(audio_part, audios)):
                    if aid == 0 or audio_part[aid] == audio_part[aid - 1]:
                        cur_audio.append(audio)
                    else:
                        merge_audio.append(np.hstack(cur_audio))
                        cur_audio = [audio]
                if cur_audio:
                    merge_audio.append(np.hstack(cur_audio))

            else:
                merge_audio = audios

            audio_feature_lens = []

            # If the audio exceeds 30 seconds, split it into chunks every 30 seconds.
            final_merge_audio = []
            max_audio_inp_len = 30 * sampling_rate
            for audio in merge_audio:
                if len(audio) <= max_audio_inp_len:
                    final_merge_audio.append(audio)
                else:
                    for i in range(math.ceil(len(audio) / max_audio_inp_len)):
                        final_merge_audio.append(audio[i * max_audio_inp_len : (i + 1) * max_audio_inp_len])

            if audios:
                audio_inputs = self.feature_extractor(
                    final_merge_audio,
                    sampling_rate=sampling_rate,
                    return_attention_mask=True,
                    padding="max_length",
                    return_tensors="pt",
                    **kwargs,
                )
                audio_feature = audio_inputs["input_features"]
                actual_lens = audio_inputs["attention_mask"].sum(dim=1)

                for feat, lens in zip(audio_feature, actual_lens):
                    audio_features_all.append(feat[:, :lens])
                    audio_feature_lens.append(lens)

                audio_feature_lens = torch.hstack(audio_feature_lens)
                audio_feature_lens_list.append(audio_feature_lens)
            else:
                audio_feature_lens_list.append([])

        if audio_features_all:
            audio_features = [i.permute(1, 0) for i in audio_features_all]
            audio_features = torch.nn.utils.rnn.pad_sequence(
                audio_features, batch_first=True, padding_value=0.0
            ).permute(0, 2, 1)
        else:
            audio_features = []

        return audio_features, audio_feature_lens_list, audio_ph_list

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        output_ids = args[0]
        result_text = []
        for result in output_ids:
            result = result[result != 0]
            if result[0] == self.tokenizer.bos_id:
                result = result[1:]
            if result[-1] == self.tokenizer.eos_id:
                result = result[:-1]
            result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
        return result_text
        # return self.tokenizer.batch_decode(*args, **kwargs)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        result = args[0]
        result = result[result != 0]
        if result[0] == self.tokenizer.bos_id:
            result = result[1:]
        if result[-1] == self.tokenizer.eos_id or (
            hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id
        ):
            result = result[:-1]
        return self.tokenizer.decode(result, *args[1:], **kwargs).strip()

    def _convert(self, input_str, max_inp_length: Optional[int] = None, **kwargs):
        input_ids = self.tokenizer.encode(input_str, **kwargs)
        if max_inp_length is not None:
            input_ids = input_ids[:max_inp_length]
        input_ids = torch.tensor(input_ids, dtype=torch.int32)

        ## image bound
        start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
        end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)

        image_start_idx = torch.where(start_cond)[0]
        image_start_idx += 1
        image_end_idx = torch.where(end_cond)[0]

        valid_image_nums = max(len(image_start_idx), len(image_end_idx))

        image_bounds = torch.hstack(
            [
                image_start_idx[:valid_image_nums].unsqueeze(-1),
                image_end_idx[:valid_image_nums].unsqueeze(-1),
            ]
        )

        ##  audio bound
        audio_start_idx = torch.where(input_ids == self.tokenizer.audio_start_id)[0]
        audio_end_idx = torch.where(input_ids == self.tokenizer.audio_end_id)[0]
        assert len(audio_start_idx) == len(audio_end_idx)
        audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])

        spk_start_idx = torch.where(input_ids == self.tokenizer.spk_start_id)[0]
        spk_end_idx = torch.where(input_ids == self.tokenizer.spk_end_id)[0]
        assert len(spk_start_idx) == len(spk_end_idx)
        spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])

        return input_ids, image_bounds, audio_bounds, spk_bounds

    def _convert_omni_to_inputs(
        self,
        images,
        audio_phs,
        texts: Union[str, List[str]],
        truncation=None,
        max_length=None,
        max_slice_nums=None,
        use_image_id=None,
        return_tensors=None,
        **kwargs,
    ):
        if images is None and audio_phs is None:
            model_inputs = self.tokenizer(
                texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs
            )
            return MiniCPMOBatchFeature(data={**model_inputs})

        image_pattern = "<image>./</image>"
        audio_pattern = "<audio>./</audio>"
        split_pattern = f"({image_pattern}|{audio_pattern})"

        if isinstance(texts, str):
            texts = [texts]

        bs = len(texts)
        if images is not None:
            images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
        else:
            images, image_sizes, tgt_sizes = [[]] * bs, [[]] * bs, [[]] * bs

        input_ids_list = []
        image_bounds_list = []
        audio_bounds_list = []
        spk_bounds_list = []

        for index, text in enumerate(texts):
            text_chunks = re.split(split_pattern, text)

            image_tags = re.findall(image_pattern, text)
            audio_tags = re.findall(audio_pattern, text)

            if image_tags:
                assert images is not None
                assert len(image_tags) == len(image_sizes[index])
            if audio_tags:
                assert audio_phs is not None
                assert len(audio_tags) == len(audio_phs[index])

            image_id = 0
            audio_id = 0
            for i, chunk in enumerate(text_chunks):
                if chunk == image_pattern:
                    image_placeholder = self.image_processor.get_slice_image_placeholder(
                        image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
                    )
                    image_id += 1
                    text_chunks[i] = image_placeholder
                elif chunk == audio_pattern:
                    audio_placeholder = audio_phs[index][audio_id]
                    audio_id += 1
                    text_chunks[i] = audio_placeholder

            final_text = "".join(text_chunks)
            input_ids, image_bounds, audio_bounds, spk_bounds = self._convert(final_text, max_length, **kwargs)

            input_ids_list.append(input_ids)
            image_bounds_list.append(image_bounds)
            audio_bounds_list.append(audio_bounds)
            spk_bounds_list.append(spk_bounds)

        padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left")
        attention_mask = torch.ones_like(padded_input_ids, dtype=torch.bool)
        for i, length in enumerate(padding_lengths):
            image_bounds_list[i] = image_bounds_list[i] + length
            audio_bounds_list[i] = audio_bounds_list[i] + length
            spk_bounds_list[i] = spk_bounds_list[i] + length
            attention_mask[i, :length] = False

        data = {
            "input_ids": padded_input_ids,
            "attention_mask": attention_mask,
            "pixel_values": images,
            "image_sizes": image_sizes,
            "image_bound": image_bounds_list,
            "tgt_sizes": tgt_sizes,
            "audio_bounds": audio_bounds_list,
            "spk_bounds": spk_bounds_list,
        }

        return data

    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        feature_extractor_input_names = self.feature_extractor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + feature_extractor_input_names))

    def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
        items = []
        if isinstance(inputs[0], list):
            assert isinstance(inputs[0][0], torch.Tensor)
            for it in inputs:
                for tr in it:
                    items.append(tr)
        else:
            assert isinstance(inputs[0], torch.Tensor)
            items = inputs

        batch_size = len(items)
        shape = items[0].shape
        dim = len(shape)
        assert dim <= 2
        if max_length is None:
            max_length = 0
        max_length = max(max_length, max(item.shape[-1] for item in items))
        min_length = min(item.shape[-1] for item in items)
        dtype = items[0].dtype

        if dim == 0:
            return torch.stack([item for item in items], dim=0), [0]
        elif dim == 1:
            if max_length == min_length:
                return torch.stack([item for item in items], dim=0), [0] * batch_size
            tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
        else:
            tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value

        padding_length = []
        for i, item in enumerate(items):
            if dim == 1:
                if padding_side == "left":
                    tensor[i, -len(item) :] = item.clone()
                else:
                    tensor[i, : len(item)] = item.clone()
            elif dim == 2:
                if padding_side == "left":
                    tensor[i, -len(item) :, :] = item.clone()
                else:
                    tensor[i, : len(item), :] = item.clone()
            padding_length.append(tensor.shape[-1] - len(item))

        return tensor, padding_length


class MelSpectrogramFeatures(torch.nn.Module):
    def __init__(
        self,
        sample_rate=24000,
        n_fft=1024,
        hop_length=256,
        n_mels=100,
        padding: Literal["center", "same"] = "center",
    ):
        super().__init__()
        if padding not in ["center", "same"]:
            raise ValueError("Padding must be 'center' or 'same'.")
        self.padding = padding
        self.mel_spec = torchaudio.transforms.MelSpectrogram(
            sample_rate=sample_rate,
            n_fft=n_fft,
            hop_length=hop_length,
            n_mels=n_mels,
            center=padding == "center",
            power=1,
        )

    def __call__(self, audio: torch.Tensor) -> torch.Tensor:
        """
        audio: Tensor([num_channels, num_samples])
        """
        return super().__call__(audio)

    def forward(self, audio: torch.Tensor) -> torch.Tensor:
        """
        audio: Tensor([num_channels, num_samples])
        """
        mel: torch.Tensor = self.mel_spec(audio)
        features = torch.log(torch.clip(mel, min=1e-5))
        return features


class ChatTTSProcessor:
    def __init__(self, text_tokenizer):
        self.audio_processor = MelSpectrogramFeatures()
        self.text_tokenizer = text_tokenizer

    def __call__(self, text_list, audio_list):
        assert len(text_list) == len(audio_list)
        input_ids_varlen = []
        for text in text_list:
            input_ids_ = self.text_tokenizer.encode(text, return_tensors="pt", add_special_tokens=False)  # [1, seq_len]
            input_ids_ = input_ids_.squeeze(0)  # [seq_len]
            input_ids_varlen.append(input_ids_)

        audio_features_varlen = []
        for audio in audio_list:
            assert audio.shape.__len__() == 1  # [seq_len]
            try:
                mel = self.audio_processor(audio)  # [100(num_mel_bins), seq_len_mel]
            except Exception as e:
                print(
                    "fuck! there is an error with audio waveform. If you use a dataset __getitem__, will skip and use next data as compensate, will not halt training."
                )
                raise e
            audio_features_varlen.append(mel)

        return {
            "tts_input_ids_varlen": input_ids_varlen,  # return List[Tensor]
            "tts_input_features_varlen": audio_features_varlen,  # return List[Tensor]
        }