File size: 5,074 Bytes
c248f01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
import logging

import librosa
import numpy as np

logger = logging.getLogger(__name__)


def is_silent(data):
    if np.abs(data).max() < 3e-3:
        return True
    else:
        return False


def sentence_end(txt):
    for c in [".", "。", "!", "?", "!", "?"]:
        if c in txt:
            if c == ".":  # check not number before it like 1.
                idx = txt.find(c)
                if idx > 0:
                    if txt[idx - 1].isdigit():
                        continue
            return c
    return ""


class NumberToTextConverter:
    def __init__(self):
        self.num_to_chinese = {
            "0": "零",
            "1": "一",
            "2": "二",
            "3": "三",
            "4": "四",
            "5": "五",
            "6": "六",
            "7": "七",
            "8": "八",
            "9": "九",
        }
        self.num_to_english = {
            "0": "zero",
            "1": "one",
            "2": "two",
            "3": "three",
            "4": "four",
            "5": "five",
            "6": "six",
            "7": "seven",
            "8": "eight",
            "9": "nine",
        }

    def number_to_chinese_digit_by_digit(self, num_str):
        result = ""
        for char in num_str:
            if char in self.num_to_chinese:
                result += self.num_to_chinese[char]
        return result

    def number_to_english_digit_by_digit(self, num_str):
        result = []
        for char in num_str:
            if char in self.num_to_english:
                result.append(self.num_to_english[char])
        return " ".join(result)

    def detect_language(self, text):
        chinese_count = len(re.findall(r"[\u4e00-\u9fff]", text))
        english_count = len(re.findall(r"[a-zA-Z]", text))
        return "chinese" if chinese_count >= english_count else "english"

    def replace_numbers_with_text(self, text, language=None):
        if language is None:
            language = self.detect_language(text)
        numbers = re.findall(r"\d+", text)

        for num in numbers:
            if language == "chinese":
                replacement = self.number_to_chinese_digit_by_digit(num)
            else:
                replacement = self.number_to_english_digit_by_digit(num)
            text = text.replace(num, replacement, 1)

        return text


class VoiceChecker:
    def __init__(self):
        self.previous_mel = None
        self.consecutive_zeros = 0
        self.consecutive_low_distance = 0

    def compute_distance(self, audio_chunk, mel_spec):
        if is_silent(audio_chunk):
            return 0.0  # 检查是否为空白片段

        mel_db = librosa.power_to_db(mel_spec)
        if self.previous_mel is None:
            self.previous_mel = mel_db
            return -1.0

        distance = np.linalg.norm(np.mean(mel_db, axis=1) - np.mean(self.previous_mel, axis=1))
        self.previous_mel = mel_db
        return distance

    def is_bad(self, audio_wav, mel_spec, chunk_size=2560, thresh=100.0):
        num_chunks = len(audio_wav) // chunk_size
        mel_chunk_size = mel_spec.shape[-1] // num_chunks
        for i in range(num_chunks):
            audio_chunk = audio_wav[i * chunk_size : (i + 1) * chunk_size]
            mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]

            distance = self.compute_distance(audio_chunk, mel_spec_chunk)
            logger.warning(f"mel dist: {distance:.1f}, zero: {self.consecutive_zeros}, low: {self.consecutive_low_distance}")
            if distance == 0:
                self.consecutive_low_distance = 0  # reset
                self.consecutive_zeros += 1
                if self.consecutive_zeros >= 12:
                    logger.warning("VoiceChecker detected 1.2 s silent. Marking as failed.")
                    return True
            elif distance < thresh:
                self.consecutive_zeros = 0
                self.consecutive_low_distance += 1
                if self.consecutive_low_distance >= 5:
                    logger.warning("VoiceChecker detected 5 consecutive low distance chunks. Marking as failed.")
                    return True
            else:
                self.consecutive_low_distance = 0
                self.consecutive_zeros = 0

        return False

    def reset(self):
        self.previous_mel = None
        self.consecutive_zeros = 0
        self.consecutive_low_distance = 0