---
license: apache-2.0
library_name: diffusers
pipeline_tag: text-to-image
---
# Exploring the Deep Fusion of Large Language Models and Diffusion Transformers for Text-to-Image Synthesis
## Resources
- [arXiv: Paper](https://arxiv.org/pdf/2505.10046)
- [GitHub: Code](https://github.com/tang-bd/fuse-dit)
## Quick Start
You can download the pre-trained model and then use `FuseDiTPipeline` in our codebase to run inference:
```python
import torch
from diffusion.pipelines import FuseDiTPipeline
pipeline = FuseDiTPipeline.from_pretrained("/path/to/pipeline/").to("cuda")
image = pipeline(
"your prompt",
width=512,
height=512,
num_inference_steps=25,
guidance_scale=6.0,
use_cache=True,
)[0][0]
image.save("test.png")
```
## Citation
```bibtex
@article{tang2025exploringdeepfusion,
title={Exploring the Deep Fusion of Large Language Models and Diffusion Transformers for Text-to-Image Synthesis},
author={Bingda Tang and Boyang Zheng and Xichen Pan and Sayak Paul and Saining Xie},
year={2025},
journal={arXiv preprint arXiv:2505.10046},
}
```