--- license: apache-2.0 --- ## Resources - [arXiv: Paper](https://arxiv.org/abs/) - [GitHub: Code](https://github.com/tang-bd/fusedit) ## Quick Start You can use `FuseDiTPipeline` in our codebase to run the model: ```python import torch from diffusion.pipelines import FuseDiTPipeline pipeline = FuseDiTPipeline.from_pretrained("ooutlierr/fuse-dit").to("cuda") image = pipeline( "your prompt", width=512, height=512, num_inference_steps=25, guidance_scale=6.0, use_cache=True, )[0][0] image.save("test.png") ``` ## Citation ```bibtex @misc{li2025sciencet2iaddressingscientificillusions, title={Science-T2I: Addressing Scientific Illusions in Image Synthesis}, author={Jialuo Li and Wenhao Chai and Xingyu Fu and Haiyang Xu and Saining Xie}, year={2025}, eprint={2504.13129}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2504.13129}, } ```