File size: 1,221 Bytes
0c27423 1181cfa 0c27423 97a0cc6 0473dd0 0c27423 75c8eea 0c27423 fb40f98 0c27423 fb40f98 0c27423 75c8eea 0c27423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
license: apache-2.0
library_name: diffusers
pipeline_tag: text-to-image
---
# Exploring the Deep Fusion of Large Language Models and Diffusion Transformers for Text-to-Image Synthesis
<div align="center">
<img src="https://github.com/tang-bd/fuse-dit/blob/main/assets/visual.jpg?raw=true" width="95%"/>
</div>
## Resources
- [arXiv: Paper](https://arxiv.org/pdf/2505.10046)
- [GitHub: Code](https://github.com/tang-bd/fuse-dit)
## Quick Start
You can download the pre-trained model and then use `FuseDiTPipeline` in our codebase to run inference:
```python
import torch
from diffusion.pipelines import FuseDiTPipeline
pipeline = FuseDiTPipeline.from_pretrained("/path/to/pipeline/").to("cuda")
image = pipeline(
"your prompt",
width=512,
height=512,
num_inference_steps=25,
guidance_scale=6.0,
use_cache=True,
)[0][0]
image.save("test.png")
```
## Citation
```bibtex
@article{tang2025exploringdeepfusion,
title={Exploring the Deep Fusion of Large Language Models and Diffusion Transformers for Text-to-Image Synthesis},
author={Bingda Tang and Boyang Zheng and Xichen Pan and Sayak Paul and Saining Xie},
year={2025},
journal={arXiv preprint arXiv:2505.10046},
}
``` |