Update seed2_tokenizer.py
Browse files- seed2_tokenizer.py +372 -10
seed2_tokenizer.py
CHANGED
@@ -20,6 +20,34 @@
|
|
20 |
SPDX-License-Identifier: BSD-3-Clause
|
21 |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
22 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
import torch.nn as nn
|
25 |
import torch
|
@@ -77,16 +105,6 @@ from timm.models.registry import register_model
|
|
77 |
from timm.models.layers import trunc_normal_, DropPath
|
78 |
from timm.models.helpers import named_apply, adapt_input_conv
|
79 |
|
80 |
-
"""
|
81 |
-
* Copyright (c) 2023, salesforce.com, inc.
|
82 |
-
* All rights reserved.
|
83 |
-
* SPDX-License-Identifier: BSD-3-Clause
|
84 |
-
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
85 |
-
* By Junnan Li
|
86 |
-
* Based on huggingface code base
|
87 |
-
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
88 |
-
"""
|
89 |
-
|
90 |
import math
|
91 |
import os
|
92 |
import warnings
|
@@ -124,6 +142,350 @@ from transformers.modeling_utils import (
|
|
124 |
)
|
125 |
from transformers.models.bert.configuration_bert import BertConfig
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
#torch.set_printoptions(profile="full")
|
128 |
|
129 |
class DropPathEvaVit(nn.Module):
|
|
|
20 |
SPDX-License-Identifier: BSD-3-Clause
|
21 |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
22 |
"""
|
23 |
+
# Copyright (c) 2024 Black Forest Labs.
|
24 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
25 |
+
# SPDX-License-Identifier: Apache-2.0
|
26 |
+
#
|
27 |
+
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
28 |
+
#
|
29 |
+
# Original file was released under Apache-2.0, with the full license text
|
30 |
+
# available at https://github.com/black-forest-labs/flux/blob/main/LICENSE.
|
31 |
+
#
|
32 |
+
# This modified file is released under the same license.
|
33 |
+
|
34 |
+
|
35 |
+
"""
|
36 |
+
* Copyright (c) 2023, salesforce.com, inc.
|
37 |
+
* All rights reserved.
|
38 |
+
* SPDX-License-Identifier: BSD-3-Clause
|
39 |
+
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
40 |
+
* By Junnan Li
|
41 |
+
* Based on huggingface code base
|
42 |
+
* https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
|
43 |
+
"""
|
44 |
+
|
45 |
+
from dataclasses import dataclass
|
46 |
+
|
47 |
+
import torch
|
48 |
+
from einops import rearrange
|
49 |
+
from torch import Tensor, nn
|
50 |
+
from safetensors.torch import load_file as load_sft
|
51 |
|
52 |
import torch.nn as nn
|
53 |
import torch
|
|
|
105 |
from timm.models.layers import trunc_normal_, DropPath
|
106 |
from timm.models.helpers import named_apply, adapt_input_conv
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
import math
|
109 |
import os
|
110 |
import warnings
|
|
|
142 |
)
|
143 |
from transformers.models.bert.configuration_bert import BertConfig
|
144 |
|
145 |
+
|
146 |
+
|
147 |
+
@dataclass
|
148 |
+
class AutoEncoderParams:
|
149 |
+
resolution: int
|
150 |
+
in_channels: int
|
151 |
+
downsample: int
|
152 |
+
ch: int
|
153 |
+
out_ch: int
|
154 |
+
ch_mult: list[int]
|
155 |
+
num_res_blocks: int
|
156 |
+
z_channels: int
|
157 |
+
scale_factor: float
|
158 |
+
shift_factor: float
|
159 |
+
|
160 |
+
|
161 |
+
def swish(x: Tensor) -> Tensor:
|
162 |
+
return x * torch.sigmoid(x)
|
163 |
+
|
164 |
+
|
165 |
+
class AttnBlock(nn.Module):
|
166 |
+
def __init__(self, in_channels: int):
|
167 |
+
super().__init__()
|
168 |
+
self.in_channels = in_channels
|
169 |
+
|
170 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
171 |
+
|
172 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
173 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
174 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
175 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
176 |
+
|
177 |
+
def attention(self, h_: Tensor) -> Tensor:
|
178 |
+
h_ = self.norm(h_)
|
179 |
+
q = self.q(h_)
|
180 |
+
k = self.k(h_)
|
181 |
+
v = self.v(h_)
|
182 |
+
|
183 |
+
b, c, h, w = q.shape
|
184 |
+
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
185 |
+
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
186 |
+
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
187 |
+
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
188 |
+
|
189 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
190 |
+
|
191 |
+
def forward(self, x: Tensor) -> Tensor:
|
192 |
+
return x + self.proj_out(self.attention(x))
|
193 |
+
|
194 |
+
|
195 |
+
class ResnetBlock(nn.Module):
|
196 |
+
def __init__(self, in_channels: int, out_channels: int):
|
197 |
+
super().__init__()
|
198 |
+
self.in_channels = in_channels
|
199 |
+
out_channels = in_channels if out_channels is None else out_channels
|
200 |
+
self.out_channels = out_channels
|
201 |
+
|
202 |
+
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
203 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
204 |
+
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
205 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
206 |
+
if self.in_channels != self.out_channels:
|
207 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
208 |
+
|
209 |
+
def forward(self, x):
|
210 |
+
h = x
|
211 |
+
h = self.norm1(h)
|
212 |
+
h = swish(h)
|
213 |
+
h = self.conv1(h)
|
214 |
+
|
215 |
+
h = self.norm2(h)
|
216 |
+
h = swish(h)
|
217 |
+
h = self.conv2(h)
|
218 |
+
|
219 |
+
if self.in_channels != self.out_channels:
|
220 |
+
x = self.nin_shortcut(x)
|
221 |
+
|
222 |
+
return x + h
|
223 |
+
|
224 |
+
|
225 |
+
class Downsample(nn.Module):
|
226 |
+
def __init__(self, in_channels: int):
|
227 |
+
super().__init__()
|
228 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
229 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
230 |
+
|
231 |
+
def forward(self, x: Tensor):
|
232 |
+
pad = (0, 1, 0, 1)
|
233 |
+
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
234 |
+
x = self.conv(x)
|
235 |
+
return x
|
236 |
+
|
237 |
+
|
238 |
+
class Upsample(nn.Module):
|
239 |
+
def __init__(self, in_channels: int):
|
240 |
+
super().__init__()
|
241 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
242 |
+
|
243 |
+
def forward(self, x: Tensor):
|
244 |
+
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
245 |
+
x = self.conv(x)
|
246 |
+
return x
|
247 |
+
|
248 |
+
|
249 |
+
class Encoder(nn.Module):
|
250 |
+
def __init__(
|
251 |
+
self,
|
252 |
+
resolution: int,
|
253 |
+
in_channels: int,
|
254 |
+
ch: int,
|
255 |
+
ch_mult: list[int],
|
256 |
+
num_res_blocks: int,
|
257 |
+
z_channels: int,
|
258 |
+
):
|
259 |
+
super().__init__()
|
260 |
+
self.ch = ch
|
261 |
+
self.num_resolutions = len(ch_mult)
|
262 |
+
self.num_res_blocks = num_res_blocks
|
263 |
+
self.resolution = resolution
|
264 |
+
self.in_channels = in_channels
|
265 |
+
# downsampling
|
266 |
+
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
267 |
+
|
268 |
+
curr_res = resolution
|
269 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
270 |
+
self.in_ch_mult = in_ch_mult
|
271 |
+
self.down = nn.ModuleList()
|
272 |
+
block_in = self.ch
|
273 |
+
for i_level in range(self.num_resolutions):
|
274 |
+
block = nn.ModuleList()
|
275 |
+
attn = nn.ModuleList()
|
276 |
+
block_in = ch * in_ch_mult[i_level]
|
277 |
+
block_out = ch * ch_mult[i_level]
|
278 |
+
for _ in range(self.num_res_blocks):
|
279 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
280 |
+
block_in = block_out
|
281 |
+
down = nn.Module()
|
282 |
+
down.block = block
|
283 |
+
down.attn = attn
|
284 |
+
if i_level != self.num_resolutions - 1:
|
285 |
+
down.downsample = Downsample(block_in)
|
286 |
+
curr_res = curr_res // 2
|
287 |
+
self.down.append(down)
|
288 |
+
|
289 |
+
# middle
|
290 |
+
self.mid = nn.Module()
|
291 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
292 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
293 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
294 |
+
|
295 |
+
# end
|
296 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
297 |
+
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
298 |
+
|
299 |
+
def forward(self, x: Tensor) -> Tensor:
|
300 |
+
# downsampling
|
301 |
+
hs = [self.conv_in(x)]
|
302 |
+
for i_level in range(self.num_resolutions):
|
303 |
+
for i_block in range(self.num_res_blocks):
|
304 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
305 |
+
if len(self.down[i_level].attn) > 0:
|
306 |
+
h = self.down[i_level].attn[i_block](h)
|
307 |
+
hs.append(h)
|
308 |
+
if i_level != self.num_resolutions - 1:
|
309 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
310 |
+
|
311 |
+
# middle
|
312 |
+
h = hs[-1]
|
313 |
+
h = self.mid.block_1(h)
|
314 |
+
h = self.mid.attn_1(h)
|
315 |
+
h = self.mid.block_2(h)
|
316 |
+
# end
|
317 |
+
h = self.norm_out(h)
|
318 |
+
h = swish(h)
|
319 |
+
h = self.conv_out(h)
|
320 |
+
return h
|
321 |
+
|
322 |
+
|
323 |
+
class Decoder(nn.Module):
|
324 |
+
def __init__(
|
325 |
+
self,
|
326 |
+
ch: int,
|
327 |
+
out_ch: int,
|
328 |
+
ch_mult: list[int],
|
329 |
+
num_res_blocks: int,
|
330 |
+
in_channels: int,
|
331 |
+
resolution: int,
|
332 |
+
z_channels: int,
|
333 |
+
):
|
334 |
+
super().__init__()
|
335 |
+
self.ch = ch
|
336 |
+
self.num_resolutions = len(ch_mult)
|
337 |
+
self.num_res_blocks = num_res_blocks
|
338 |
+
self.resolution = resolution
|
339 |
+
self.in_channels = in_channels
|
340 |
+
self.ffactor = 2 ** (self.num_resolutions - 1)
|
341 |
+
|
342 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
343 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
344 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
345 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
346 |
+
|
347 |
+
# z to block_in
|
348 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
349 |
+
|
350 |
+
# middle
|
351 |
+
self.mid = nn.Module()
|
352 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
353 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
354 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
355 |
+
|
356 |
+
# upsampling
|
357 |
+
self.up = nn.ModuleList()
|
358 |
+
for i_level in reversed(range(self.num_resolutions)):
|
359 |
+
block = nn.ModuleList()
|
360 |
+
attn = nn.ModuleList()
|
361 |
+
block_out = ch * ch_mult[i_level]
|
362 |
+
for _ in range(self.num_res_blocks + 1):
|
363 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
364 |
+
block_in = block_out
|
365 |
+
up = nn.Module()
|
366 |
+
up.block = block
|
367 |
+
up.attn = attn
|
368 |
+
if i_level != 0:
|
369 |
+
up.upsample = Upsample(block_in)
|
370 |
+
curr_res = curr_res * 2
|
371 |
+
self.up.insert(0, up) # prepend to get consistent order
|
372 |
+
|
373 |
+
# end
|
374 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
375 |
+
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
376 |
+
|
377 |
+
def forward(self, z: Tensor) -> Tensor:
|
378 |
+
# z to block_in
|
379 |
+
h = self.conv_in(z)
|
380 |
+
|
381 |
+
# middle
|
382 |
+
h = self.mid.block_1(h)
|
383 |
+
h = self.mid.attn_1(h)
|
384 |
+
h = self.mid.block_2(h)
|
385 |
+
|
386 |
+
# upsampling
|
387 |
+
for i_level in reversed(range(self.num_resolutions)):
|
388 |
+
for i_block in range(self.num_res_blocks + 1):
|
389 |
+
h = self.up[i_level].block[i_block](h)
|
390 |
+
if len(self.up[i_level].attn) > 0:
|
391 |
+
h = self.up[i_level].attn[i_block](h)
|
392 |
+
if i_level != 0:
|
393 |
+
h = self.up[i_level].upsample(h)
|
394 |
+
|
395 |
+
# end
|
396 |
+
h = self.norm_out(h)
|
397 |
+
h = swish(h)
|
398 |
+
h = self.conv_out(h)
|
399 |
+
return h
|
400 |
+
|
401 |
+
|
402 |
+
class DiagonalGaussian(nn.Module):
|
403 |
+
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
404 |
+
super().__init__()
|
405 |
+
self.sample = sample
|
406 |
+
self.chunk_dim = chunk_dim
|
407 |
+
|
408 |
+
def forward(self, z: Tensor) -> Tensor:
|
409 |
+
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
410 |
+
if self.sample:
|
411 |
+
std = torch.exp(0.5 * logvar)
|
412 |
+
return mean + std * torch.randn_like(mean)
|
413 |
+
else:
|
414 |
+
return mean
|
415 |
+
|
416 |
+
|
417 |
+
class AutoEncoder(nn.Module):
|
418 |
+
def __init__(self, params: AutoEncoderParams):
|
419 |
+
super().__init__()
|
420 |
+
self.encoder = Encoder(
|
421 |
+
resolution=params.resolution,
|
422 |
+
in_channels=params.in_channels,
|
423 |
+
ch=params.ch,
|
424 |
+
ch_mult=params.ch_mult,
|
425 |
+
num_res_blocks=params.num_res_blocks,
|
426 |
+
z_channels=params.z_channels,
|
427 |
+
)
|
428 |
+
self.decoder = Decoder(
|
429 |
+
resolution=params.resolution,
|
430 |
+
in_channels=params.in_channels,
|
431 |
+
ch=params.ch,
|
432 |
+
out_ch=params.out_ch,
|
433 |
+
ch_mult=params.ch_mult,
|
434 |
+
num_res_blocks=params.num_res_blocks,
|
435 |
+
z_channels=params.z_channels,
|
436 |
+
)
|
437 |
+
self.reg = DiagonalGaussian()
|
438 |
+
|
439 |
+
self.scale_factor = params.scale_factor
|
440 |
+
self.shift_factor = params.shift_factor
|
441 |
+
|
442 |
+
def encode(self, x: Tensor) -> Tensor:
|
443 |
+
z = self.reg(self.encoder(x))
|
444 |
+
z = self.scale_factor * (z - self.shift_factor)
|
445 |
+
return z
|
446 |
+
|
447 |
+
def decode(self, z: Tensor) -> Tensor:
|
448 |
+
z = z / self.scale_factor + self.shift_factor
|
449 |
+
return self.decoder(z)
|
450 |
+
|
451 |
+
def forward(self, x: Tensor) -> Tensor:
|
452 |
+
return self.decode(self.encode(x))
|
453 |
+
|
454 |
+
|
455 |
+
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
456 |
+
if len(missing) > 0 and len(unexpected) > 0:
|
457 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
458 |
+
print("\n" + "-" * 79 + "\n")
|
459 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
460 |
+
elif len(missing) > 0:
|
461 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
462 |
+
elif len(unexpected) > 0:
|
463 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
464 |
+
|
465 |
+
|
466 |
+
def load_ae(local_path: str) -> AutoEncoder:
|
467 |
+
ae_params = AutoEncoderParams(
|
468 |
+
resolution=256,
|
469 |
+
in_channels=3,
|
470 |
+
downsample=8,
|
471 |
+
ch=128,
|
472 |
+
out_ch=3,
|
473 |
+
ch_mult=[1, 2, 4, 4],
|
474 |
+
num_res_blocks=2,
|
475 |
+
z_channels=16,
|
476 |
+
scale_factor=0.3611,
|
477 |
+
shift_factor=0.1159,
|
478 |
+
)
|
479 |
+
|
480 |
+
# Loading the autoencoder
|
481 |
+
ae = AutoEncoder(ae_params)
|
482 |
+
|
483 |
+
if local_path is not None:
|
484 |
+
sd = load_sft(local_path)
|
485 |
+
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
|
486 |
+
print_load_warning(missing, unexpected)
|
487 |
+
return ae, ae_params
|
488 |
+
|
489 |
#torch.set_printoptions(profile="full")
|
490 |
|
491 |
class DropPathEvaVit(nn.Module):
|