Xenova HF Staff commited on
Commit
051788e
·
verified ·
1 Parent(s): cd28d22

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -19,6 +19,46 @@ NeoBERT is a **next-generation encoder** model for English text representation,
19
 
20
  ## Usage
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  ### ONNXRuntime
23
 
24
  ```py
 
19
 
20
  ## Usage
21
 
22
+ ### Transformers.js
23
+
24
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
25
+ ```bash
26
+ npm i @huggingface/transformers
27
+ ```
28
+
29
+ You can then compute embeddings using the pipeline API:
30
+
31
+ ```js
32
+ import { pipeline } from "@huggingface/transformers";
33
+
34
+ // Create feature extraction pipeline
35
+ const extractor = await pipeline("feature-extraction", "onnx-community/NeoBERT-ONNX");
36
+
37
+ // Compute embeddings
38
+ const text = "NeoBERT is the most efficient model of its kind!";
39
+ const embedding = await extractor(text, { pooling: "cls" });
40
+ console.log(embedding.dims); // [1, 768]
41
+ ```
42
+
43
+ Or manually with the model and tokenizer classes:
44
+ ```js
45
+ import { AutoModel, AutoTokenizer } from "@huggingface/transformers";
46
+
47
+ // Load model and tokenizer
48
+ const model_id = "onnx-community/NeoBERT-ONNX";
49
+ const tokenizer = await AutoTokenizer.from_pretrained(model_id);
50
+ const model = await AutoModel.from_pretrained(model_id);
51
+
52
+ // Tokenize input text
53
+ const text = "NeoBERT is the most efficient model of its kind!";
54
+ const inputs = tokenizer(text);
55
+
56
+ // Generate embeddings
57
+ const outputs = await model(inputs);
58
+ const embedding = outputs.last_hidden_state.slice(null, 0);
59
+ console.log(embedding.dims); // [1, 768]
60
+ ```
61
+
62
  ### ONNXRuntime
63
 
64
  ```py