baobuiquang commited on
Commit
d44012e
·
verified ·
1 Parent(s): c7e735c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +165 -155
README.md CHANGED
@@ -1,156 +1,166 @@
1
- ---
2
- language:
3
- - multilingual
4
- - ar
5
- - bg
6
- - ca
7
- - cs
8
- - da
9
- - de
10
- - el
11
- - en
12
- - es
13
- - et
14
- - fa
15
- - fi
16
- - fr
17
- - gl
18
- - gu
19
- - he
20
- - hi
21
- - hr
22
- - hu
23
- - hy
24
- - id
25
- - it
26
- - ja
27
- - ka
28
- - ko
29
- - ku
30
- - lt
31
- - lv
32
- - mk
33
- - mn
34
- - mr
35
- - ms
36
- - my
37
- - nb
38
- - nl
39
- - pl
40
- - pt
41
- - ro
42
- - ru
43
- - sk
44
- - sl
45
- - sq
46
- - sr
47
- - sv
48
- - th
49
- - tr
50
- - uk
51
- - ur
52
- - vi
53
- license: apache-2.0
54
- library_name: sentence-transformers
55
- tags:
56
- - sentence-transformers
57
- - feature-extraction
58
- - sentence-similarity
59
- - transformers
60
- language_bcp47:
61
- - fr-ca
62
- - pt-br
63
- - zh-cn
64
- - zh-tw
65
- pipeline_tag: sentence-similarity
66
- ---
67
-
68
- # sentence-transformers/paraphrase-multilingual-mpnet-base-v2
69
-
70
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
71
-
72
-
73
-
74
- ## Usage (Sentence-Transformers)
75
-
76
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
77
-
78
- ```
79
- pip install -U sentence-transformers
80
- ```
81
-
82
- Then you can use the model like this:
83
-
84
- ```python
85
- from sentence_transformers import SentenceTransformer
86
- sentences = ["This is an example sentence", "Each sentence is converted"]
87
-
88
- model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
89
- embeddings = model.encode(sentences)
90
- print(embeddings)
91
- ```
92
-
93
-
94
-
95
- ## Usage (HuggingFace Transformers)
96
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
97
-
98
- ```python
99
- from transformers import AutoTokenizer, AutoModel
100
- import torch
101
-
102
-
103
- #Mean Pooling - Take attention mask into account for correct averaging
104
- def mean_pooling(model_output, attention_mask):
105
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
106
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
107
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
108
-
109
-
110
- # Sentences we want sentence embeddings for
111
- sentences = ['This is an example sentence', 'Each sentence is converted']
112
-
113
- # Load model from HuggingFace Hub
114
- tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
115
- model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
116
-
117
- # Tokenize sentences
118
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
119
-
120
- # Compute token embeddings
121
- with torch.no_grad():
122
- model_output = model(**encoded_input)
123
-
124
- # Perform pooling. In this case, average pooling
125
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
126
-
127
- print("Sentence embeddings:")
128
- print(sentence_embeddings)
129
- ```
130
-
131
-
132
-
133
- ## Full Model Architecture
134
- ```
135
- SentenceTransformer(
136
- (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
137
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
138
- )
139
- ```
140
-
141
- ## Citing & Authors
142
-
143
- This model was trained by [sentence-transformers](https://www.sbert.net/).
144
-
145
- If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
146
- ```bibtex
147
- @inproceedings{reimers-2019-sentence-bert,
148
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
149
- author = "Reimers, Nils and Gurevych, Iryna",
150
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
151
- month = "11",
152
- year = "2019",
153
- publisher = "Association for Computational Linguistics",
154
- url = "http://arxiv.org/abs/1908.10084",
155
- }
 
 
 
 
 
 
 
 
 
 
156
  ```
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - ar
5
+ - bg
6
+ - ca
7
+ - cs
8
+ - da
9
+ - de
10
+ - el
11
+ - en
12
+ - es
13
+ - et
14
+ - fa
15
+ - fi
16
+ - fr
17
+ - gl
18
+ - gu
19
+ - he
20
+ - hi
21
+ - hr
22
+ - hu
23
+ - hy
24
+ - id
25
+ - it
26
+ - ja
27
+ - ka
28
+ - ko
29
+ - ku
30
+ - lt
31
+ - lv
32
+ - mk
33
+ - mn
34
+ - mr
35
+ - ms
36
+ - my
37
+ - nb
38
+ - nl
39
+ - pl
40
+ - pt
41
+ - ro
42
+ - ru
43
+ - sk
44
+ - sl
45
+ - sq
46
+ - sr
47
+ - sv
48
+ - th
49
+ - tr
50
+ - uk
51
+ - ur
52
+ - vi
53
+ license: apache-2.0
54
+ library_name: sentence-transformers
55
+ tags:
56
+ - sentence-transformers
57
+ - feature-extraction
58
+ - sentence-similarity
59
+ - transformers
60
+ language_bcp47:
61
+ - fr-ca
62
+ - pt-br
63
+ - zh-cn
64
+ - zh-tw
65
+ pipeline_tag: sentence-similarity
66
+ ---
67
+
68
+ Please do not use.
69
+
70
+ This is just a backup for [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2).
71
+
72
+ -----
73
+
74
+ -----
75
+
76
+ -----
77
+
78
+ # sentence-transformers/paraphrase-multilingual-mpnet-base-v2
79
+
80
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
81
+
82
+
83
+
84
+ ## Usage (Sentence-Transformers)
85
+
86
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
87
+
88
+ ```
89
+ pip install -U sentence-transformers
90
+ ```
91
+
92
+ Then you can use the model like this:
93
+
94
+ ```python
95
+ from sentence_transformers import SentenceTransformer
96
+ sentences = ["This is an example sentence", "Each sentence is converted"]
97
+
98
+ model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
99
+ embeddings = model.encode(sentences)
100
+ print(embeddings)
101
+ ```
102
+
103
+
104
+
105
+ ## Usage (HuggingFace Transformers)
106
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
107
+
108
+ ```python
109
+ from transformers import AutoTokenizer, AutoModel
110
+ import torch
111
+
112
+
113
+ #Mean Pooling - Take attention mask into account for correct averaging
114
+ def mean_pooling(model_output, attention_mask):
115
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
116
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
117
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
118
+
119
+
120
+ # Sentences we want sentence embeddings for
121
+ sentences = ['This is an example sentence', 'Each sentence is converted']
122
+
123
+ # Load model from HuggingFace Hub
124
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
125
+ model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
126
+
127
+ # Tokenize sentences
128
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
129
+
130
+ # Compute token embeddings
131
+ with torch.no_grad():
132
+ model_output = model(**encoded_input)
133
+
134
+ # Perform pooling. In this case, average pooling
135
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
136
+
137
+ print("Sentence embeddings:")
138
+ print(sentence_embeddings)
139
+ ```
140
+
141
+
142
+
143
+ ## Full Model Architecture
144
+ ```
145
+ SentenceTransformer(
146
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
147
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
148
+ )
149
+ ```
150
+
151
+ ## Citing & Authors
152
+
153
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
154
+
155
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
156
+ ```bibtex
157
+ @inproceedings{reimers-2019-sentence-bert,
158
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
159
+ author = "Reimers, Nils and Gurevych, Iryna",
160
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
161
+ month = "11",
162
+ year = "2019",
163
+ publisher = "Association for Computational Linguistics",
164
+ url = "http://arxiv.org/abs/1908.10084",
165
+ }
166
  ```