ly.le4
commited on
Commit
·
9b9defd
1
Parent(s):
f258526
Add/update README with usage instructions
Browse files
README.md
CHANGED
@@ -1,199 +1,184 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **
|
33 |
-
- **
|
34 |
-
- **
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
### Downstream Use
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
|
|
|
|
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
-
|
|
|
|
|
|
|
85 |
|
86 |
-
|
|
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
|
|
|
|
91 |
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
|
|
|
|
|
|
100 |
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
|
115 |
#### Factors
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
|
121 |
#### Metrics
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
[
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
## Technical Specifications
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
|
157 |
-
|
|
|
|
|
|
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
|
167 |
#### Software
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
|
173 |
-
|
174 |
|
175 |
**BibTeX:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
|
195 |
-
[
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags: ["ocr", "handwritten-text-recognition", "vision-encoder-decoder", "trocr", "image-to-text"]
|
4 |
---
|
5 |
|
6 |
+
# TrOCR - Handwritten Text Recognition Model
|
|
|
|
|
|
|
7 |
|
8 |
+
A fine-tuned TrOCR (Transformer OCR) model for handwritten text recognition, built on the vision-encoder-decoder architecture. This model can transcribe handwritten text from images into machine-readable text.
|
9 |
|
10 |
## Model Details
|
11 |
|
12 |
### Model Description
|
13 |
|
14 |
+
This is a TrOCR model that combines a Vision Transformer (ViT) encoder with a Transformer decoder to perform handwritten text recognition. The model has been trained to convert handwritten text images into text output.
|
|
|
|
|
15 |
|
16 |
+
- **Developed by:** Fine-tuned from Microsoft's TrOCR architecture
|
17 |
+
- **Model type:** Vision-Encoder-Decoder (TrOCR)
|
18 |
+
- **Language(s):** Multi-language support (based on training data)
|
19 |
+
- **License:** [Please specify your license]
|
20 |
+
- **Finetuned from model:** Microsoft's TrOCR base model
|
|
|
|
|
21 |
|
22 |
+
### Model Architecture
|
23 |
|
24 |
+
- **Encoder:** Vision Transformer (ViT) with 12 layers, 12 attention heads, 768 hidden size
|
25 |
+
- **Decoder:** Transformer decoder with 12 layers, 16 attention heads, 1024 hidden size
|
26 |
+
- **Image input:** 384x384 pixels, 3 channels (RGB)
|
27 |
+
- **Vocabulary size:** 50,265 tokens
|
28 |
+
- **Max sequence length:** 512 tokens
|
29 |
|
30 |
## Uses
|
31 |
|
|
|
|
|
32 |
### Direct Use
|
33 |
|
34 |
+
This model is designed for:
|
35 |
+
- **Handwritten text recognition** from images
|
36 |
+
- **Document digitization** and transcription
|
37 |
+
- **Historical document analysis**
|
38 |
+
- **Form processing** and data extraction
|
39 |
+
- **Educational applications** (grading handwritten assignments)
|
40 |
|
41 |
+
### Downstream Use
|
42 |
|
43 |
+
The model can be fine-tuned for:
|
44 |
+
- **Specific handwriting styles** or languages
|
45 |
+
- **Domain-specific documents** (medical, legal, academic)
|
46 |
+
- **Real-time OCR applications**
|
47 |
+
- **Mobile OCR apps**
|
48 |
|
49 |
### Out-of-Scope Use
|
50 |
|
51 |
+
- **Printed text recognition** (use standard OCR tools instead)
|
52 |
+
- **Handwriting style analysis** or personality assessment
|
53 |
+
- **Text generation** (this is a recognition model, not generative)
|
54 |
+
- **Low-quality or extremely blurry images**
|
55 |
|
56 |
## Bias, Risks, and Limitations
|
57 |
|
58 |
+
### Limitations
|
59 |
|
60 |
+
- **Image quality dependency:** Performance degrades with poor image quality
|
61 |
+
- **Handwriting style variation:** May struggle with unusual or artistic handwriting
|
62 |
+
- **Language bias:** Performance depends on training data language distribution
|
63 |
+
- **Context sensitivity:** May misinterpret text without proper context
|
64 |
|
65 |
### Recommendations
|
66 |
|
67 |
+
- Ensure input images are clear and well-lit
|
68 |
+
- Use appropriate image preprocessing for optimal results
|
69 |
+
- Validate outputs for critical applications
|
70 |
+
- Consider domain-specific fine-tuning for specialized use cases
|
71 |
|
72 |
## How to Get Started with the Model
|
73 |
|
74 |
+
### Basic Usage
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
```python
|
77 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
78 |
+
from PIL import Image
|
79 |
|
80 |
+
# Load model and processor
|
81 |
+
processor = TrOCRProcessor.from_pretrained("your-model-path")
|
82 |
+
model = VisionEncoderDecoderModel.from_pretrained("your-model-path")
|
83 |
|
84 |
+
# Load and process image
|
85 |
+
image = Image.open("handwritten_text.jpg").convert("RGB")
|
86 |
|
87 |
+
# Generate text
|
88 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
89 |
+
generated_ids = model.generate(pixel_values)
|
90 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
91 |
|
92 |
+
print(f"Recognized text: {generated_text}")
|
93 |
+
```
|
94 |
|
95 |
+
### Requirements
|
96 |
|
97 |
+
```bash
|
98 |
+
pip install transformers torch pillow
|
99 |
+
```
|
100 |
|
101 |
+
## Training Details
|
102 |
|
103 |
+
### Training Data
|
104 |
|
105 |
+
[Specify your training dataset details here]
|
106 |
|
107 |
+
### Training Procedure
|
108 |
|
109 |
+
#### Preprocessing
|
110 |
+
- Images resized to 384x384 pixels
|
111 |
+
- Normalized with mean [0.5, 0.5, 0.5] and std [0.5, 0.5, 0.5]
|
112 |
+
- RGB conversion and rescaling applied
|
113 |
|
114 |
+
#### Training Hyperparameters
|
115 |
+
- **Training regime:** [Specify training precision and regime]
|
116 |
+
- **Image size:** 384x384
|
117 |
+
- **Max sequence length:** 512 tokens
|
118 |
|
119 |
## Evaluation
|
120 |
|
|
|
|
|
121 |
### Testing Data, Factors & Metrics
|
122 |
|
123 |
#### Testing Data
|
124 |
+
[Specify your evaluation dataset]
|
|
|
|
|
|
|
125 |
|
126 |
#### Factors
|
127 |
+
- Image quality and resolution
|
128 |
+
- Handwriting style and legibility
|
129 |
+
- Text length and complexity
|
130 |
+
- Language and script type
|
131 |
|
132 |
#### Metrics
|
133 |
+
- **Character Error Rate (CER)**
|
134 |
+
- **Word Error Rate (WER)**
|
135 |
+
- **Accuracy at character/word level**
|
|
|
136 |
|
137 |
### Results
|
138 |
|
139 |
+
[Include your model's performance metrics here]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
## Technical Specifications
|
142 |
|
143 |
### Model Architecture and Objective
|
144 |
|
145 |
+
The model uses a **Vision-Encoder-Decoder** architecture:
|
146 |
+
- **Encoder:** ViT processes image patches to extract visual features
|
147 |
+
- **Decoder:** Transformer decoder generates text tokens autoregressively
|
148 |
+
- **Objective:** Minimize cross-entropy loss between predicted and ground truth text
|
149 |
|
150 |
### Compute Infrastructure
|
151 |
|
|
|
|
|
152 |
#### Hardware
|
153 |
+
[Specify training hardware]
|
|
|
154 |
|
155 |
#### Software
|
156 |
+
- **Transformers version:** 4.55.1
|
157 |
+
- **PyTorch compatibility:** [Specify version]
|
158 |
+
- **CUDA support:** [Specify if applicable]
|
159 |
|
160 |
+
## Citation
|
|
|
|
|
161 |
|
162 |
+
If you use this model in your research, please cite:
|
163 |
|
164 |
**BibTeX:**
|
165 |
+
```bibtex
|
166 |
+
@misc{trocr-handwritten-recognition,
|
167 |
+
title={TrOCR Handwritten Text Recognition Model},
|
168 |
+
author={[Your Name/Organization]},
|
169 |
+
year={2024},
|
170 |
+
url={[Model URL]}
|
171 |
+
}
|
172 |
+
```
|
173 |
|
174 |
+
## Model Card Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
[Your Name/Organization]
|
177 |
|
178 |
+
## Model Card Contact
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
[Your contact information]
|
181 |
|
182 |
+
## Acknowledgments
|
183 |
|
184 |
+
This model is based on the TrOCR architecture developed by Microsoft Research. Special thanks to the Hugging Face team for the transformers library and the open-source community for contributions to OCR research.
|