ly.le4 commited on
Commit
9b9defd
·
1 Parent(s): f258526

Add/update README with usage instructions

Browse files
Files changed (1) hide show
  1. README.md +105 -120
README.md CHANGED
@@ -1,199 +1,184 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
- ### Training Data
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
81
 
82
- [More Information Needed]
 
83
 
84
- ### Training Procedure
 
 
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
 
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
100
 
101
- [More Information Needed]
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
  #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
-
165
- [More Information Needed]
166
 
167
  #### Software
 
 
 
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
 
 
 
 
 
 
 
 
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags: ["ocr", "handwritten-text-recognition", "vision-encoder-decoder", "trocr", "image-to-text"]
4
  ---
5
 
6
+ # TrOCR - Handwritten Text Recognition Model
 
 
 
7
 
8
+ A fine-tuned TrOCR (Transformer OCR) model for handwritten text recognition, built on the vision-encoder-decoder architecture. This model can transcribe handwritten text from images into machine-readable text.
9
 
10
  ## Model Details
11
 
12
  ### Model Description
13
 
14
+ This is a TrOCR model that combines a Vision Transformer (ViT) encoder with a Transformer decoder to perform handwritten text recognition. The model has been trained to convert handwritten text images into text output.
 
 
15
 
16
+ - **Developed by:** Fine-tuned from Microsoft's TrOCR architecture
17
+ - **Model type:** Vision-Encoder-Decoder (TrOCR)
18
+ - **Language(s):** Multi-language support (based on training data)
19
+ - **License:** [Please specify your license]
20
+ - **Finetuned from model:** Microsoft's TrOCR base model
 
 
21
 
22
+ ### Model Architecture
23
 
24
+ - **Encoder:** Vision Transformer (ViT) with 12 layers, 12 attention heads, 768 hidden size
25
+ - **Decoder:** Transformer decoder with 12 layers, 16 attention heads, 1024 hidden size
26
+ - **Image input:** 384x384 pixels, 3 channels (RGB)
27
+ - **Vocabulary size:** 50,265 tokens
28
+ - **Max sequence length:** 512 tokens
29
 
30
  ## Uses
31
 
 
 
32
  ### Direct Use
33
 
34
+ This model is designed for:
35
+ - **Handwritten text recognition** from images
36
+ - **Document digitization** and transcription
37
+ - **Historical document analysis**
38
+ - **Form processing** and data extraction
39
+ - **Educational applications** (grading handwritten assignments)
40
 
41
+ ### Downstream Use
42
 
43
+ The model can be fine-tuned for:
44
+ - **Specific handwriting styles** or languages
45
+ - **Domain-specific documents** (medical, legal, academic)
46
+ - **Real-time OCR applications**
47
+ - **Mobile OCR apps**
48
 
49
  ### Out-of-Scope Use
50
 
51
+ - **Printed text recognition** (use standard OCR tools instead)
52
+ - **Handwriting style analysis** or personality assessment
53
+ - **Text generation** (this is a recognition model, not generative)
54
+ - **Low-quality or extremely blurry images**
55
 
56
  ## Bias, Risks, and Limitations
57
 
58
+ ### Limitations
59
 
60
+ - **Image quality dependency:** Performance degrades with poor image quality
61
+ - **Handwriting style variation:** May struggle with unusual or artistic handwriting
62
+ - **Language bias:** Performance depends on training data language distribution
63
+ - **Context sensitivity:** May misinterpret text without proper context
64
 
65
  ### Recommendations
66
 
67
+ - Ensure input images are clear and well-lit
68
+ - Use appropriate image preprocessing for optimal results
69
+ - Validate outputs for critical applications
70
+ - Consider domain-specific fine-tuning for specialized use cases
71
 
72
  ## How to Get Started with the Model
73
 
74
+ ### Basic Usage
 
 
 
 
75
 
76
+ ```python
77
+ from transformers import TrOCRProcessor, VisionEncoderDecoderModel
78
+ from PIL import Image
79
 
80
+ # Load model and processor
81
+ processor = TrOCRProcessor.from_pretrained("your-model-path")
82
+ model = VisionEncoderDecoderModel.from_pretrained("your-model-path")
83
 
84
+ # Load and process image
85
+ image = Image.open("handwritten_text.jpg").convert("RGB")
86
 
87
+ # Generate text
88
+ pixel_values = processor(image, return_tensors="pt").pixel_values
89
+ generated_ids = model.generate(pixel_values)
90
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
91
 
92
+ print(f"Recognized text: {generated_text}")
93
+ ```
94
 
95
+ ### Requirements
96
 
97
+ ```bash
98
+ pip install transformers torch pillow
99
+ ```
100
 
101
+ ## Training Details
102
 
103
+ ### Training Data
104
 
105
+ [Specify your training dataset details here]
106
 
107
+ ### Training Procedure
108
 
109
+ #### Preprocessing
110
+ - Images resized to 384x384 pixels
111
+ - Normalized with mean [0.5, 0.5, 0.5] and std [0.5, 0.5, 0.5]
112
+ - RGB conversion and rescaling applied
113
 
114
+ #### Training Hyperparameters
115
+ - **Training regime:** [Specify training precision and regime]
116
+ - **Image size:** 384x384
117
+ - **Max sequence length:** 512 tokens
118
 
119
  ## Evaluation
120
 
 
 
121
  ### Testing Data, Factors & Metrics
122
 
123
  #### Testing Data
124
+ [Specify your evaluation dataset]
 
 
 
125
 
126
  #### Factors
127
+ - Image quality and resolution
128
+ - Handwriting style and legibility
129
+ - Text length and complexity
130
+ - Language and script type
131
 
132
  #### Metrics
133
+ - **Character Error Rate (CER)**
134
+ - **Word Error Rate (WER)**
135
+ - **Accuracy at character/word level**
 
136
 
137
  ### Results
138
 
139
+ [Include your model's performance metrics here]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
+ ## Technical Specifications
142
 
143
  ### Model Architecture and Objective
144
 
145
+ The model uses a **Vision-Encoder-Decoder** architecture:
146
+ - **Encoder:** ViT processes image patches to extract visual features
147
+ - **Decoder:** Transformer decoder generates text tokens autoregressively
148
+ - **Objective:** Minimize cross-entropy loss between predicted and ground truth text
149
 
150
  ### Compute Infrastructure
151
 
 
 
152
  #### Hardware
153
+ [Specify training hardware]
 
154
 
155
  #### Software
156
+ - **Transformers version:** 4.55.1
157
+ - **PyTorch compatibility:** [Specify version]
158
+ - **CUDA support:** [Specify if applicable]
159
 
160
+ ## Citation
 
 
161
 
162
+ If you use this model in your research, please cite:
163
 
164
  **BibTeX:**
165
+ ```bibtex
166
+ @misc{trocr-handwritten-recognition,
167
+ title={TrOCR Handwritten Text Recognition Model},
168
+ author={[Your Name/Organization]},
169
+ year={2024},
170
+ url={[Model URL]}
171
+ }
172
+ ```
173
 
174
+ ## Model Card Authors
 
 
 
 
 
 
175
 
176
+ [Your Name/Organization]
177
 
178
+ ## Model Card Contact
 
 
 
 
 
 
179
 
180
+ [Your contact information]
181
 
182
+ ## Acknowledgments
183
 
184
+ This model is based on the TrOCR architecture developed by Microsoft Research. Special thanks to the Hugging Face team for the transformers library and the open-source community for contributions to OCR research.