--- library_name: peft license: mit base_model: unsloth/Phi-3-medium-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 52c729ce-5afb-48f2-8dfa-2fe68cba505a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Phi-3-medium-4k-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 89aad2fc2d25d5d8_train_data.json ds_type: json format: custom path: /workspace/input_data/89aad2fc2d25d5d8_train_data.json type: field_input: description_left field_instruction: title_left field_output: title_right format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: oldiday/52c729ce-5afb-48f2-8dfa-2fe68cba505a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/89aad2fc2d25d5d8_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 4a34521a-7e93-4ec6-97aa-a80150f75cff wandb_project: Gradients-On-Six wandb_run: your_name wandb_runid: 4a34521a-7e93-4ec6-97aa-a80150f75cff warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 52c729ce-5afb-48f2-8dfa-2fe68cba505a This model is a fine-tuned version of [unsloth/Phi-3-medium-4k-instruct](https://huggingface.co/unsloth/Phi-3-medium-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0037 | 1 | 2.6081 | | 10.0473 | 0.0337 | 9 | 2.5230 | | 8.9648 | 0.0674 | 18 | 2.1459 | | 8.0252 | 0.1011 | 27 | 1.8734 | | 6.7145 | 0.1348 | 36 | 1.7052 | | 7.006 | 0.1685 | 45 | 1.5842 | | 6.1356 | 0.2022 | 54 | 1.4921 | | 5.8344 | 0.2360 | 63 | 1.4243 | | 5.582 | 0.2697 | 72 | 1.3830 | | 5.3015 | 0.3034 | 81 | 1.3596 | | 5.9653 | 0.3371 | 90 | 1.3506 | | 5.9094 | 0.3708 | 99 | 1.3485 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1