--- library_name: peft license: apache-2.0 base_model: Intel/neural-chat-7b-v3-3 tags: - axolotl - generated_from_trainer model-index: - name: 07759a36-0040-4ea4-af16-8b29efd2b6b1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Intel/neural-chat-7b-v3-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 661f233dfac00184_train_data.json ds_type: json format: custom path: /workspace/input_data/661f233dfac00184_train_data.json type: field_input: references field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: oldiday/07759a36-0040-4ea4-af16-8b29efd2b6b1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/661f233dfac00184_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 648045f5-cb00-48d6-8462-335a482b443f wandb_project: Gradients-On-Six wandb_run: your_name wandb_runid: 648045f5-cb00-48d6-8462-335a482b443f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 07759a36-0040-4ea4-af16-8b29efd2b6b1 This model is a fine-tuned version of [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | 0.9585 | | 2.4639 | 0.0068 | 9 | 0.5530 | | 1.845 | 0.0135 | 18 | 0.4736 | | 1.8023 | 0.0203 | 27 | 0.4550 | | 1.9313 | 0.0271 | 36 | 0.4471 | | 1.8595 | 0.0338 | 45 | 0.4428 | | 1.711 | 0.0406 | 54 | 0.4383 | | 1.8908 | 0.0474 | 63 | 0.4364 | | 1.6747 | 0.0542 | 72 | 0.4336 | | 1.7165 | 0.0609 | 81 | 0.4322 | | 1.5697 | 0.0677 | 90 | 0.4315 | | 1.7899 | 0.0745 | 99 | 0.4313 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1