--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an mteb/emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1803 - Accuracy: 0.94 - F1: 0.9400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5017 | 1.0 | 250 | 0.2116 | 0.9295 | 0.9305 | | 0.1763 | 2.0 | 500 | 0.1617 | 0.936 | 0.9369 | | 0.1267 | 3.0 | 750 | 0.1492 | 0.9385 | 0.9386 | | 0.0979 | 4.0 | 1000 | 0.1495 | 0.9395 | 0.9392 | | 0.0787 | 5.0 | 1250 | 0.1602 | 0.935 | 0.9349 | | 0.067 | 6.0 | 1500 | 0.1588 | 0.9405 | 0.9401 | | 0.0557 | 7.0 | 1750 | 0.1675 | 0.9415 | 0.9413 | | 0.0452 | 8.0 | 2000 | 0.1764 | 0.937 | 0.9365 | | 0.0375 | 9.0 | 2250 | 0.1765 | 0.9405 | 0.9406 | | 0.0337 | 10.0 | 2500 | 0.1803 | 0.94 | 0.9400 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3