File size: 2,390 Bytes
7a4bfc7 b233239 d59000c 7a4bfc7 b233239 7a4bfc7 b233239 7a4bfc7 b233239 b963c40 6a8f4bb 7a4bfc7 b233239 7a4bfc7 d59000c 7a4bfc7 b233239 7a4bfc7 b233239 7a4bfc7 b233239 7a4bfc7 d59000c 7a4bfc7 b233239 7a4bfc7 b233239 7a4bfc7 b233239 7a4bfc7 b233239 7a4bfc7 b233239 7a4bfc7 b233239 7a4bfc7 b233239 d59000c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-yoruba-test
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_16_1
type: common_voice_16_1
config: yo
split: test
args: yo
metrics:
- name: Wer
type: wer
value: 0.6802364381733245
language:
- yo
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-mms-1b-yoruba-test
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6682
- Wer: 0.6802
Finetuned by Daniel Ogbuigwe
## Model description
This checkpoint is a model fine-tuned for multi-lingual ASR using Facebook's Massive Multilingual Speech project. This checkpoint is based on the Wav2Vec2 architecture and makes use of adapter models to transcribe 1000+ languages. The checkpoint consists of 1 billion parameters and has been fine-tuned from facebook/mms-1b on Yoruba.
## Intended uses & limitations
More information needed
## Training and evaluation data
Common Voice 16.1 Yoruba data
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.8923 | 0.77 | 100 | 0.7710 | 0.7413 |
| 0.7507 | 1.54 | 200 | 0.7249 | 0.7585 |
| 0.7033 | 2.31 | 300 | 0.7105 | 0.7247 |
| 0.6888 | 3.08 | 400 | 0.6829 | 0.7229 |
| 0.6471 | 3.85 | 500 | 0.6682 | 0.6802 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0 |