File size: 2,390 Bytes
7a4bfc7
b233239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59000c
 
7a4bfc7
 
b233239
 
7a4bfc7
b233239
7a4bfc7
b233239
 
 
 
b963c40
 
6a8f4bb
7a4bfc7
b233239
7a4bfc7
d59000c
7a4bfc7
b233239
7a4bfc7
b233239
7a4bfc7
b233239
7a4bfc7
d59000c
7a4bfc7
b233239
7a4bfc7
b233239
7a4bfc7
b233239
 
 
 
 
 
 
 
 
 
7a4bfc7
b233239
7a4bfc7
b233239
 
 
 
 
 
 
7a4bfc7
 
b233239
7a4bfc7
b233239
 
 
d59000c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-yoruba-test
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_16_1
      type: common_voice_16_1
      config: yo
      split: test
      args: yo
    metrics:
    - name: Wer
      type: wer
      value: 0.6802364381733245
language:
- yo
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-mms-1b-yoruba-test

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6682
- Wer: 0.6802


Finetuned by Daniel Ogbuigwe

## Model description

This checkpoint is a model fine-tuned for multi-lingual ASR using Facebook's Massive Multilingual Speech project. This checkpoint is based on the Wav2Vec2 architecture and makes use of adapter models to transcribe 1000+ languages. The checkpoint consists of 1 billion parameters and has been fine-tuned from facebook/mms-1b on Yoruba.

## Intended uses & limitations

More information needed

## Training and evaluation data

Common Voice 16.1 Yoruba data

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.8923        | 0.77  | 100  | 0.7710          | 0.7413 |
| 0.7507        | 1.54  | 200  | 0.7249          | 0.7585 |
| 0.7033        | 2.31  | 300  | 0.7105          | 0.7247 |
| 0.6888        | 3.08  | 400  | 0.6829          | 0.7229 |
| 0.6471        | 3.85  | 500  | 0.6682          | 0.6802 |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0