File size: 1,605 Bytes
ed7b702 9460d89 ed7b702 9460d89 ed7b702 71e0456 ed7b702 9460d89 ed7b702 9460d89 ed7b702 9460d89 ed7b702 9460d89 ed7b702 9460d89 ed7b702 0cfb787 71e0456 ed7b702 0573119 ed7b702 26355cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-ar
tags:
- generated_from_trainer
model-index:
- name: masrawy-english-arabic-translator-clauda-opus-v1
results: []
datasets:
- oddadmix/egyptian_english_arabic_claude
language:
- en
- ar
metrics:
- bleu
- chrf
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# masrawy-english-arabic-translator-clauda-opus-v1
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on oddadmix/egyptian_english_arabic_claude dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0078
## Model description
This model is finetuned on opus-mt-en-ar for English to Egyptian dialect translations
## Usage
```python
from transformers import pipeline
modelName = "oddadmix/masrawy-english-arabic-translator-v2"
translator = pipeline("translation", model=modelName)
output = translator("Where is the nearest pharmacy")
print(output[0]['translation_text'])
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.15.1
### Benchmarks
- BLEU: 0.3449933819584583
- CHRF: 66.67228299384574 |