--- license: mit datasets: - observerw/ChiseLLM-Completion - observerw/ChiseLLM-Decompile base_model: - Qwen/Qwen2.5-Coder-7B-Instruct --- # ChiseLLM Models ChiseLLM [GitHub](https://github.com/observerw/ChiseLLM) ChiseLLM is a series of **large reasoning models specifically trained for the [Chisel Hardware Construction language](https://www.chisel-lang.org)**, aimed at revolutionizing HCL-Baed Agile Hardware Development Methodology (AHDM). Built on [Qwen/Qwen2.5-Coder-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) with domain-adaptive fine-tuning, the model combines high-quality reasoning datasets and specific thinking patterns to significantly enhance performance in hardware design tasks. ChiseLLM Models can: - **Transform natural language specifications into high-quality Chisel code** (Spec-to-Chisel) - **Intelligently translate Verilog code into enhanced Chisel implementations** (Decompile-to-Chisel) - **Generate hardware designs with superior variability and extensibility**, surpassing traditional design approaches ### Use Cases ChiseLLM Models is particularly suited for the following applications: - **Rapid Hardware Design Prototyping**: Dramatically shortens the design cycle from specification to implementation - **Verilog Code Modernization**: Intelligently converts legacy Verilog code into extensible Chisel implementations - **Hardware Architecture Exploration**: Generates multiple design variants for the same functional requirements - **Design Refactoring and Optimization**: Leverages Chisel's advanced features to improve existing hardware designs - **Agile Hardware Development Education**: Serves as an assistive tool for learning Chisel and modern hardware design methods ### Training results Spec-to-Chisel task on VerilogEval: | Models | pass@1 | pass@3 | pass@5 | syntax(%) | | ------------------------------ | --------- | --------- | --------- | --------- | | Llama3.1-8B-Instruct | 4.33 | 9.90 | 13.21 | 9.02 | | Qwen2.5-Coder-7B-Instruct | 21.94 | 31.87 | 36.73 | 37.08 | | \*Deepseek-R1-Distill-Llama-8B | 9.31 | 15.44 | 17.72 | 16.01 | | \*ChiseLLM-7B | **29.41** | **47.08** | **54.04** | **58.82** | | Models | pass@1 | pass@3 | pass@5 | syntax(%) | | ------------------------------- | --------- | --------- | --------- | --------- | | Qwen2.5-Coder-32B-Instruct | 41.02 | 53.85 | 58.79 | 73.47 | | Qwen2.5-72B-Instruct | 39.74 | 49.30 | 52.90 | 61.31 | | Llama-3.3-70B-Instruct | 38.14 | 44.90 | 48.02 | 65.97 | | \*Deepseek-R1-Distill-Qwen-32B | 38.50 | 54.58 | 61.16 | 52.19 | | \*Deepseek-R1-Distill-Llama-70B | 36.62 | 52.28 | 59.90 | 51.72 | | \*ChiseLLM-32B | **51.43** | **68.29** | **72.78** | **76.45** | | Models | pass@1 | pass@3 | pass@5 | syntax(%) | | ------------- | --------- | --------- | --------- | --------- | | Deepseek-V3 | 50.16 | 63.44 | 67.32 | 76.37 | | GPT-4o | 42.04 | 60.16 | 65.17 | 69.76 | | \*Deepseek-R1 | **62.74** | **76.05** | **80.16** | **82.85** | Decompile-to-Chisel task on VerilogEval: | Models | pass@1 | pass@3 | pass@5 | syntax(%) | | ------------------------------ | --------- | --------- | --------- | --------- | | Llama3.1-8B-Instruct | 5.43 | 12.29 | 16.08 | 11.15 | | Qwen2.5-Coder-7B-Instruct | 27.60 | 34.58 | 37.19 | 43.23 | | \*Deepseek-R1-Distill-Llama-8B | 10.05 | 16.15 | 18.13 | 12.03 | | \* ChiseLLM-7B | **50.47** | **70.99** | **78.08** | **59.19** | | Models | pass@1 | pass@3 | pass@5 | syntax(%) | | ------------------------------- | --------- | --------- | --------- | --------- | | Qwen2.5-Coder-32B-Instruct | 41.19 | 48.96 | 51.59 | 53.93 | | Qwen2.5-72B-Instruct | 40.54 | 47.32 | 49.83 | 59.30 | | Llama-3.3-70B-Instruct | 38.38 | 46.96 | 51.36 | 48.00 | | \*Deepseek-R1-Distill-Qwen-32B | 45.03 | 63.02 | 70.18 | 53.17 | | \*Deepseek-R1-Distill-Llama-70B | 37.50 | 55.05 | 63.84 | 45.59 | | \*ChiseLLM-32B | **56.41** | **72.00** | **77.67** | **64.71** | | Models | pass@1 | pass@3 | pass@5 | syntax(%) | | ------------- | --------- | --------- | --------- | --------- | | Deepseek-V3 | **54.57** | 63.19 | 66.71 | **66.19** | | GPT-4o | 42.39 | 65.75 | 71.83 | 53.77 | | \*Deepseek-R1 | 53.45 | **71.50** | **77.91** | 59.13 | ### Framework versions - Transformers 4.51.0 - Pytorch 2.6.0a0+df5bbc09d1.nv24.12 - Datasets 3.4.1 - Tokenizers 0.21.0 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 ## Citation If you are interested in our work, please consider citing this, it would be greatly appreciated! ```bibtex @misc{wang2025chisellmunleashingpowerreasoning, title={ChiseLLM: Unleashing the Power of Reasoning LLMs for Chisel Agile Hardware Development}, author={Bowei Wang and Jiaran Gao and Yelai Feng and Renzhi Chen and Shanshan Li and Lei Wang}, year={2025}, eprint={2504.19144}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2504.19144}, } ```