--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE pipeline_tag: text-generation base_model: mlabonne/Qwen3-8B-abliterated --- Int8 quant for optimized performance on Ampere. # usage ```shell uv venv --python 3.12 uv pip install "sglang[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python uv run python -m sglang.launch_server --model-path nytopop/Qwen3-8B-abliterated.w8a8 --quantization w8a8_int8 --reasoning-parser qwen3 ``` # creation ```python from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import load_dataset from llmcompressor import oneshot from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers.compression.helpers import calculate_offload_device_map model_id = "mlabonne/Qwen3-8B-abliterated" model_out = model_id.split("/")[1] + ".w8a8" num_samples = 256 max_seq_len = 4096 tokenizer = AutoTokenizer.from_pretrained(model_id) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.shuffle().select(range(num_samples)) ds = ds.map(preprocess_fn) device_map = calculate_offload_device_map( model_id, reserve_for_hessians=True, num_gpus=1, torch_dtype="bfloat16" ) for k, v in device_map.items(): if v == 'disk': device_map[k] = 'cpu' model = AutoModelForCausalLM.from_pretrained( model_id, device_map=device_map, torch_dtype="bfloat16", ) recipe = [ SmoothQuantModifier( smoothing_strength=0.7, ), GPTQModifier( sequential=True, targets="Linear", scheme="W8A8", ignore=["lm_head", "re:.*mlp.gate$"], dampening_frac=0.05, ), ] oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, output_dir=model_out, ) ```