--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE pipeline_tag: text-generation base_model: Qwen/Qwen3-30B-A3B --- # usage with sglang Currently, upstream sglang doesn't load this quant correctly due to a few minor issues. Until upstream is fixed, a working fork is available at https://github.com/nytopop/sglang/tree/qwen-30b-a3b: ```shell uv venv --python 3.12 # vllm is needed to load w4a16 quant scheme uv pip install "vllm>=0.8.5" # use patched sglang from git uv pip install "git+https://github.com/nytopop/sglang.git@qwen-30b-a3b#subdirectory=python[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python # run uv run python -m sglang.launch_server --model-path nytopop/Qwen3-30B-A3B.w4a16 --reasoning-parser qwen3 --dtype float16 ``` # creation ```python from transformers import AutoModelForCausalLM from llmcompressor import oneshot from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers.compression.helpers import calculate_offload_device_map model_id = "Qwen/Qwen3-30B-A3B" model_out = model_id.split("/")[1] + ".w4a16" device_map = calculate_offload_device_map( model_id, reserve_for_hessians=False, num_gpus=1, torch_dtype="bfloat16" ) for k, v in device_map.items(): if v == 'disk': device_map[k] = 'cpu' model = AutoModelForCausalLM.from_pretrained( model_id, device_map=device_map, torch_dtype="bfloat16", ) recipe = QuantizationModifier( targets="Linear", scheme="W4A16", ignore=["lm_head", "re:.*mlp.gate$", "re:.*mlp.shared_expert_gate$"], ) oneshot(model=model, recipe=recipe, output_dir=model_out) ```