--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE pipeline_tag: text-generation base_model: Qwen/Qwen3-0.6B --- Int8 quant for optimized performance on Ampere. # usage ```shell uv venv --python 3.12 uv pip install sglang[all] --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python uv run python -m sglang.launch_server --model-path nytopop/Qwen3-0.6B.w8a8 --quantization w8a8_int8 --reasoning-parser qwen3 ``` # creation ```python from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import load_dataset from llmcompressor import oneshot from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.modifiers.smoothquant import SmoothQuantModifier model_id = "Qwen/Qwen3-0.6B" model_out = "Qwen3-0.6B.w8a8" num_samples = 256 max_seq_len = 4096 tokenizer = AutoTokenizer.from_pretrained(model_id) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.shuffle().select(range(num_samples)) ds = ds.map(preprocess_fn) recipe = [ SmoothQuantModifier(smoothing_strength=0.7), GPTQModifier(sequential=True,targets="Linear",scheme="W8A8",ignore=["lm_head"],dampening_frac=0.01), ] model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype="bfloat16", ) oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, output_dir=model_out, ) ```