File size: 1,658 Bytes
9a57998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE
pipeline_tag: text-generation
base_model: Qwen/Qwen3-0.6B
---
Int8 quant for optimized performance on Ampere.
# usage
```shell
uv venv --python 3.12
uv pip install sglang[all] --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
uv run python -m sglang.launch_server --model-path nytopop/Qwen3-0.6B.w8a8 --quantization w8a8_int8 --reasoning-parser qwen3
```
# creation
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
model_id = "Qwen/Qwen3-0.6B"
model_out = "Qwen3-0.6B.w8a8"
num_samples = 256
max_seq_len = 4096
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
recipe = [
SmoothQuantModifier(smoothing_strength=0.7),
GPTQModifier(sequential=True,targets="Linear",scheme="W8A8",ignore=["lm_head"],dampening_frac=0.01),
]
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="bfloat16",
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
output_dir=model_out,
)
```
|