|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch NemotronH model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import DynamicCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import ( |
|
AttentionMaskConverter, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.modeling_outputs import ( |
|
MoeCausalLMOutputWithPast, |
|
) |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
) |
|
from transformers.utils.import_utils import ( |
|
is_causal_conv1d_available, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
is_mamba_2_ssm_available, |
|
) |
|
from .configuration_nemotron_h import NemotronHConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
if is_mamba_2_ssm_available(): |
|
from mamba_ssm.ops.triton.selective_state_update import selective_state_update |
|
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined |
|
else: |
|
mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, selective_state_update = None, None, None |
|
|
|
try: |
|
|
|
from mamba_ssm.ops.triton.layernorm_gated import rmsnorm_fn |
|
except ImportError: |
|
raise ImportError("mamba-ssm is required by the Mamba model but cannot be imported") |
|
|
|
if is_causal_conv1d_available(): |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
else: |
|
causal_conv1d_update, causal_conv1d_fn = None, None |
|
|
|
if is_flash_attn_2_available(): |
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward |
|
|
|
is_fast_path_available = all( |
|
( |
|
selective_state_update, |
|
mamba_chunk_scan_combined, |
|
mamba_split_conv1d_scan_combined, |
|
causal_conv1d_fn, |
|
causal_conv1d_update, |
|
) |
|
) |
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "nvidia/Nemotron-H-56B-Base-8K" |
|
_CONFIG_FOR_DOC = "NemotronHConfig" |
|
|
|
|
|
|
|
|
|
|
|
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int): |
|
""" |
|
Padding x tensor with `pad_size` on the seq_len dim (dim=1) |
|
|
|
Assumes that we only have tensors of either size 4 or 3 |
|
""" |
|
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0) |
|
|
|
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0) |
|
|
|
|
|
def reshape_into_chunks(input_tensor, pad_size, chunk_size): |
|
""" |
|
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and |
|
simultaneously splitting it into chunk sequences. |
|
|
|
Assumes that we only have tensors of either size 4 or 3 |
|
""" |
|
|
|
input_tensor = pad_tensor_by_size(input_tensor, pad_size) |
|
|
|
if len(input_tensor.shape) == 3: |
|
|
|
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2]) |
|
else: |
|
|
|
return input_tensor.reshape( |
|
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3] |
|
) |
|
|
|
|
|
def segment_sum(input_tensor): |
|
""" |
|
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions. |
|
""" |
|
chunk_size = input_tensor.size(-1) |
|
|
|
|
|
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size) |
|
|
|
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1) |
|
input_tensor = input_tensor.masked_fill(~mask, 0) |
|
|
|
tensor_segsum = torch.cumsum(input_tensor, dim=-2) |
|
|
|
|
|
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0) |
|
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf) |
|
return tensor_segsum |
|
|
|
|
|
def apply_mask_to_padding_states(hidden_states, attention_mask): |
|
""" |
|
Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66 |
|
""" |
|
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: |
|
dtype = hidden_states.dtype |
|
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) |
|
|
|
return hidden_states |
|
|
|
|
|
class HybridMambaAttentionDynamicCache(DynamicCache): |
|
""" |
|
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache |
|
(which has a constant shape regardless of seq_len). |
|
|
|
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` |
|
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor |
|
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, |
|
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). |
|
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), |
|
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, |
|
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. |
|
""" |
|
|
|
def __init__(self, config, batch_size, dtype=torch.float16, device=None): |
|
super().__init__() |
|
self.device=device |
|
self.dtype = dtype |
|
self.hybrid_override_pattern = config.hybrid_override_pattern |
|
self.has_previous_state = False |
|
self.intermediate_size = config.expand * config.hidden_size |
|
self.ssm_state_size = config.ssm_state_size |
|
self.conv_kernel_size = config.conv_kernel |
|
self.conv_dim = self.intermediate_size + 2 * config.n_groups * config.ssm_state_size |
|
self.conv_states = [] |
|
self.ssm_states = [] |
|
self.transformer_layers = [] |
|
for i in range(config.num_hidden_layers): |
|
if self.hybrid_override_pattern[i] == "M": |
|
|
|
self.conv_states += [ |
|
torch.zeros(batch_size, self.conv_dim, self.conv_kernel_size, device=device, dtype=dtype) |
|
] |
|
self.ssm_states += [ |
|
torch.zeros(batch_size, self.intermediate_size, self.ssm_state_size, device=device, dtype=dtype) |
|
] |
|
else: |
|
|
|
self.conv_states += [torch.tensor([[]] * batch_size, device=device)] |
|
self.ssm_states += [torch.tensor([[]] * batch_size, device=device)] |
|
self.transformer_layers.append(i) |
|
|
|
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] |
|
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] |
|
|
|
def update( |
|
self, |
|
key_states: torch.Tensor, |
|
value_states: torch.Tensor, |
|
layer_idx: int, |
|
cache_kwargs: Optional[Dict[str, Any]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if self.key_cache[layer_idx].shape[-1] == 0: |
|
self.key_cache[layer_idx] = key_states |
|
self.value_cache[layer_idx] = value_states |
|
else: |
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) |
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) |
|
|
|
return self.key_cache[layer_idx], self.value_cache[layer_idx] |
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor): |
|
"""Reorders the cache for beam search, given the selected beam indices.""" |
|
for layer_idx in range(len(self.key_cache)): |
|
device = self.key_cache[layer_idx].device |
|
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
device = self.value_cache[layer_idx].device |
|
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
device = self.conv_states[layer_idx].device |
|
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device)) |
|
device = self.ssm_states[layer_idx].device |
|
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed.""" |
|
|
|
layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx |
|
if len(self.key_cache) <= layer_idx: |
|
return 0 |
|
return self.key_cache[layer_idx].shape[-2] |
|
|
|
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]: |
|
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.") |
|
|
|
@classmethod |
|
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache": |
|
raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.") |
|
|
|
|
|
def update_conv_state( |
|
self, layer_idx: int, new_conv_state: torch.Tensor, cache_init: bool = False |
|
) -> torch.Tensor: |
|
if cache_init: |
|
self.conv_states[layer_idx] = new_conv_state.to(self.device) |
|
else: |
|
self.conv_states[layer_idx] = self.conv_states[layer_idx].roll(shifts=-1, dims=-1) |
|
self.conv_states[layer_idx][:, :, -1] = new_conv_state[:, 0, :].to(self.conv_states[layer_idx].device) |
|
return self.conv_states[layer_idx] |
|
|
|
def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor): |
|
self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states[layer_idx].device) |
|
return self.ssm_states[layer_idx] |
|
|
|
def reset(self): |
|
self.conv_states.zero_() |
|
self.ssm_states.zero_() |
|
|
|
class MambaRMSNormGated(torch.nn.Module): |
|
def __init__(self, hidden_size, group_size, eps=1e-5): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
self.group_size = group_size |
|
|
|
|
|
def forward(self, hidden_states, gate=None): |
|
return rmsnorm_fn(x=hidden_states, |
|
weight=self.weight, |
|
bias=None, |
|
z=gate, |
|
eps=self.variance_epsilon, |
|
group_size=self.group_size, |
|
norm_before_gate=False |
|
) |
|
|
|
class NemotronHMamba2Mixer(nn.Module): |
|
""" |
|
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. |
|
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) |
|
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, |
|
and is why Mamba is called **selective** state spaces) |
|
""" |
|
|
|
def __init__(self, config: NemotronHConfig, layer_idx: int): |
|
super().__init__() |
|
self.num_heads = config.mamba_num_heads |
|
self.hidden_size = config.hidden_size |
|
self.ssm_state_size = config.ssm_state_size |
|
self.conv_kernel_size = config.conv_kernel |
|
self.intermediate_size = config.mamba_num_heads * config.mamba_head_dim |
|
self.layer_idx = layer_idx |
|
self.use_conv_bias = config.use_conv_bias |
|
self.activation = config.mamba_hidden_act |
|
self.act = ACT2FN[config.mamba_hidden_act] |
|
|
|
self.layer_norm_epsilon = config.layer_norm_epsilon |
|
|
|
self.n_groups = config.n_groups |
|
self.head_dim = config.mamba_head_dim |
|
self.chunk_size = config.chunk_size |
|
|
|
self.time_step_limit = config.time_step_limit |
|
self.time_step_min = config.time_step_min |
|
self.time_step_max = config.time_step_max |
|
|
|
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size |
|
self.conv1d = nn.Conv1d( |
|
in_channels=self.conv_dim, |
|
out_channels=self.conv_dim, |
|
bias=config.use_conv_bias, |
|
kernel_size=config.conv_kernel, |
|
groups=self.conv_dim, |
|
padding=config.conv_kernel - 1, |
|
) |
|
|
|
|
|
projection_size = self.intermediate_size + self.conv_dim + self.num_heads |
|
self.in_proj = nn.Linear( |
|
self.hidden_size, |
|
projection_size, |
|
bias=config.use_bias, |
|
) |
|
|
|
|
|
|
|
|
|
self.dt_bias = nn.Parameter(torch.ones(self.num_heads)) |
|
|
|
|
|
|
|
A = torch.arange(1, self.num_heads + 1) |
|
self.A_log = nn.Parameter(torch.log(A)) |
|
self.A_log._no_weight_decay = True |
|
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon, group_size=self.intermediate_size // self.n_groups) |
|
self.D = nn.Parameter(torch.ones(self.num_heads)) |
|
self.D._no_weight_decay = True |
|
|
|
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) |
|
self.use_bias = config.use_bias |
|
|
|
if not is_fast_path_available: |
|
logger.warning_once( |
|
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`" |
|
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" |
|
" https://github.com/Dao-AILab/causal-conv1d" |
|
) |
|
|
|
def cuda_kernels_forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cache_params: Optional[HybridMambaAttentionDynamicCache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
|
|
hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask) |
|
projected_states = self.in_proj(hidden_states) |
|
|
|
|
|
batch_size, seq_len, _ = hidden_states.shape |
|
groups_time_state_size = self.n_groups * self.ssm_state_size |
|
d_mlp = ( |
|
projected_states.shape[-1] |
|
- 2 * self.intermediate_size |
|
- 2 * self.n_groups * self.ssm_state_size |
|
- self.num_heads |
|
) // 2 |
|
|
|
|
|
if cache_params is not None and cache_position is not None and cache_position[0] > 0: |
|
_, _, gate, hidden_states_B_C, dt = projected_states.squeeze(1).split( |
|
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 |
|
) |
|
|
|
|
|
hidden_states_B_C = causal_conv1d_update( |
|
hidden_states_B_C, |
|
cache_params.conv_states[self.layer_idx], |
|
self.conv1d.weight.squeeze(1), |
|
self.conv1d.bias, |
|
self.activation, |
|
) |
|
|
|
hidden_states, B, C = torch.split( |
|
hidden_states_B_C, |
|
[self.intermediate_size, groups_time_state_size, groups_time_state_size], |
|
dim=-1, |
|
) |
|
|
|
|
|
A = -torch.exp(self.A_log.float()) |
|
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) |
|
dt = dt[:, :, None].expand(-1, -1, self.head_dim) |
|
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) |
|
D = self.D[:, None, ...].expand(-1, self.head_dim) |
|
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups) |
|
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups) |
|
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim) |
|
hidden_states = selective_state_update( |
|
cache_params.ssm_states[self.layer_idx], |
|
hidden_states_reshaped, |
|
dt, |
|
A, |
|
B, |
|
C, |
|
D, |
|
z=None, |
|
dt_bias=dt_bias, |
|
dt_softplus=True, |
|
) |
|
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim) |
|
|
|
hidden_states = self.norm(hidden_states, gate) |
|
|
|
|
|
out = self.out_proj(hidden_states)[:, None, ...] |
|
|
|
|
|
else: |
|
A = -torch.exp(self.A_log.float()) |
|
dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit} |
|
|
|
|
|
if self.training and cache_params is None: |
|
out = mamba_split_conv1d_scan_combined( |
|
projected_states, |
|
self.conv1d.weight.squeeze(1), |
|
self.conv1d.bias, |
|
self.dt_bias, |
|
A, |
|
D=self.D, |
|
chunk_size=self.chunk_size, |
|
seq_idx=None, |
|
activation=self.activation, |
|
rmsnorm_weight=self.norm.weight, |
|
rmsnorm_eps=self.norm.variance_epsilon, |
|
outproj_weight=self.out_proj.weight, |
|
outproj_bias=self.out_proj.bias, |
|
headdim=self.head_dim, |
|
ngroups=self.n_groups, |
|
norm_before_gate=False, |
|
return_final_states=False, |
|
**dt_limit_kwargs, |
|
) |
|
|
|
else: |
|
_, _, gate, hidden_states_B_C, dt = projected_states.split( |
|
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 |
|
) |
|
|
|
|
|
|
|
if cache_params is not None: |
|
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2) |
|
conv_states = nn.functional.pad( |
|
hidden_states_B_C_transposed, |
|
(cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0), |
|
) |
|
cache_params.update_conv_state( |
|
layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True |
|
) |
|
|
|
if self.activation not in ["silu", "swish"]: |
|
hidden_states_B_C = self.act( |
|
self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2) |
|
) |
|
else: |
|
hidden_states_B_C = causal_conv1d_fn( |
|
x=hidden_states_B_C.transpose(1, 2), |
|
weight=self.conv1d.weight.squeeze(1), |
|
bias=self.conv1d.bias, |
|
activation=self.activation, |
|
).transpose(1, 2) |
|
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask) |
|
hidden_states, B, C = torch.split( |
|
hidden_states_B_C, |
|
[self.intermediate_size, groups_time_state_size, groups_time_state_size], |
|
dim=-1, |
|
) |
|
|
|
|
|
scan_output, ssm_state = mamba_chunk_scan_combined( |
|
hidden_states.view(batch_size, seq_len, -1, self.head_dim), |
|
dt, |
|
A, |
|
B.view(batch_size, seq_len, self.n_groups, -1), |
|
C.view(batch_size, seq_len, self.n_groups, -1), |
|
chunk_size=self.chunk_size, |
|
D=self.D, |
|
z=None, |
|
seq_idx=None, |
|
return_final_states=True, |
|
dt_bias=self.dt_bias, |
|
dt_softplus=True, |
|
**dt_limit_kwargs, |
|
) |
|
|
|
|
|
if ssm_state is not None and cache_params is not None: |
|
cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state) |
|
|
|
scan_output = scan_output.view(batch_size, seq_len, -1) |
|
|
|
|
|
scan_output = self.norm(scan_output, gate) |
|
|
|
|
|
out = self.out_proj(scan_output) |
|
return out |
|
|
|
|
|
def torch_forward(self, input_states, cache_params: Optional[HybridMambaAttentionDynamicCache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None): |
|
batch_size, seq_len, _ = input_states.shape |
|
dtype = input_states.dtype |
|
|
|
|
|
input_states = apply_mask_to_padding_states(input_states, attention_mask) |
|
projected_states = self.in_proj(input_states) |
|
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size-self.num_heads) // 2 |
|
_, _, gate, hidden_states_B_C, dt = projected_states.split( |
|
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 |
|
) |
|
|
|
|
|
if cache_params is not None and cache_position is not None and cache_position[0] > 0: |
|
cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=hidden_states_B_C, cache_init=False) |
|
|
|
|
|
conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device) |
|
|
|
hidden_states_B_C = torch.sum( |
|
conv_states * self.conv1d.weight.squeeze(1), dim=-1 |
|
) |
|
if self.use_conv_bias: |
|
hidden_states_B_C = hidden_states_B_C + self.conv1d.bias |
|
hidden_states_B_C = self.act(hidden_states_B_C) |
|
else: |
|
|
|
if cache_params is not None: |
|
hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2) |
|
conv_states = nn.functional.pad( |
|
hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0) |
|
) |
|
cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True) |
|
|
|
hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)) |
|
|
|
hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask) |
|
hidden_states, B, C = torch.split( |
|
hidden_states_B_C, |
|
[self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], |
|
dim=-1 |
|
) |
|
|
|
|
|
A = -torch.exp(self.A_log.float()) |
|
if cache_params is not None and cache_position is not None and cache_position[0] > 0: |
|
|
|
cache_device = cache_params.ssm_states[0].device if len(cache_params.ssm_states) > 0 else cache_params.device |
|
|
|
|
|
|
|
dt = dt[:, 0, :][:, None, ...] |
|
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim) |
|
|
|
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim) |
|
|
|
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype)) |
|
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1]) |
|
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) |
|
|
|
dA = (torch.exp(dt[..., None] * A)).to(device=cache_device) |
|
|
|
|
|
|
|
|
|
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :] |
|
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous() |
|
B = B.reshape(batch_size, -1, B.shape[-1]) |
|
|
|
dB = dt[..., None] * B[..., None, :] |
|
|
|
|
|
|
|
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim) |
|
dBx = (dB * hidden_states[..., None]).to(device=cache_device) |
|
|
|
|
|
cache_params.update_ssm_state( |
|
layer_idx=self.layer_idx, |
|
new_ssm_state=cache_params.ssm_states[self.layer_idx] * dA + dBx |
|
) |
|
|
|
|
|
|
|
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :] |
|
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous() |
|
C = C.reshape(batch_size, -1, C.shape[-1]) |
|
|
|
|
|
ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype) |
|
|
|
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) |
|
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) |
|
y = torch.bmm(ssm_states_reshaped, C_reshaped) |
|
y = y.view(batch_size, self.num_heads, self.head_dim) |
|
|
|
|
|
|
|
D = self.D[..., None].expand(self.D.shape[0], self.head_dim) |
|
y = (y + hidden_states * D).to(y.dtype) |
|
|
|
|
|
y = y.reshape(batch_size, -1)[:, None, ...] |
|
else: |
|
|
|
dt = nn.functional.softplus(dt + self.dt_bias) |
|
dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1]) |
|
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float() |
|
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() |
|
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() |
|
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1) |
|
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1) |
|
pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size |
|
|
|
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size) |
|
|
|
|
|
hidden_states = hidden_states * dt[..., None] |
|
A = A.to(hidden_states.dtype) * dt |
|
|
|
|
|
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)] |
|
|
|
|
|
A = A.permute(0, 3, 1, 2) |
|
A_cumsum = torch.cumsum(A, dim=-1) |
|
|
|
|
|
|
|
L = torch.exp(segment_sum(A)) |
|
|
|
|
|
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :] |
|
G = G_intermediate.sum(dim=-1) |
|
|
|
|
|
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None] |
|
M = M_intermediate.sum(dim=-1) |
|
|
|
|
|
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3) |
|
|
|
|
|
|
|
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) |
|
B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None] |
|
states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2) |
|
|
|
|
|
|
|
if cache_params is not None and cache_position is not None and cache_position[0] > 0: |
|
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device) |
|
else: |
|
previous_states = torch.zeros_like(states[:, :1]) |
|
states = torch.cat([previous_states, states], dim=1) |
|
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)))) |
|
decay_chunk = decay_chunk.transpose(1, 3) |
|
new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1) |
|
states, ssm_state = new_states[:, :-1], new_states[:, -1] |
|
|
|
|
|
|
|
state_decay_out = torch.exp(A_cumsum) |
|
C_times_states = (C[..., None, :] * states[:, :, None, ...]) |
|
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1) |
|
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None]) |
|
|
|
|
|
y = Y_diag + Y_off |
|
|
|
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim) |
|
|
|
y = y + D_residual |
|
|
|
if pad_size > 0: |
|
y = y[:, :seq_len, :, :] |
|
y = y.reshape(batch_size, seq_len, -1) |
|
|
|
|
|
if ssm_state is not None and cache_params is not None: |
|
cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state) |
|
|
|
scan_output = self.norm(y, gate) |
|
|
|
|
|
|
|
|
|
contextualized_states = self.out_proj(scan_output.to(dtype)) |
|
return contextualized_states |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
cache_params: Optional[HybridMambaAttentionDynamicCache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type: |
|
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask) |
|
dtype = hidden_states.dtype |
|
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: |
|
|
|
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) |
|
|
|
return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask) |
|
|
|
|
|
class NemotronHRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
NemotronHRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
return (self.weight.to(torch.float32) * hidden_states).to(input_dtype) |
|
|
|
class NemotronHBlock(nn.Module): |
|
def __init__(self, config, layer_idx): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.residual_in_fp32 = config.residual_in_fp32 |
|
self.norm = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
|
|
self.block_type = config.layers_block_type[layer_idx] |
|
if self.block_type == "mamba": |
|
self.mixer = NemotronHMamba2Mixer(config, layer_idx=layer_idx) |
|
elif self.block_type == "attention": |
|
self.mixer = NEMOTRONH_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) |
|
elif self.block_type == "mlp": |
|
self.mixer = NemotronHMLP(config, layer_idx=layer_idx) |
|
else: |
|
raise ValueError(f"Invalid layer pattern {config.hybrid_override_pattern[layer_idx]}") |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
cache_params: Optional[HybridMambaAttentionDynamicCache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
with torch.cuda.stream(torch.cuda.default_stream(hidden_states.device)): |
|
|
|
residual = hidden_states |
|
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype)) |
|
if self.residual_in_fp32: |
|
residual = residual.to(torch.float32) |
|
|
|
if self.block_type == "mamba": |
|
hidden_states = self.mixer( |
|
hidden_states, cache_params=cache_params, cache_position=cache_position |
|
) |
|
elif self.block_type == "attention": |
|
hidden_states = self.mixer( |
|
hidden_states, cache_position=cache_position |
|
) |
|
hidden_states = hidden_states[0] |
|
elif self.block_type == "mlp": |
|
hidden_states = self.mixer( |
|
hidden_states |
|
) |
|
else: |
|
raise ValueError(f"Invalid block_type: {self.block_type}") |
|
|
|
hidden_states = residual + hidden_states |
|
return hidden_states |
|
|
|
|
|
|
|
class NemotronHMLP(nn.Module): |
|
def __init__(self, config, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) |
|
self.act_fn = ACT2FN[config.mlp_hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.up_proj(x))) |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class NemotronHAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: NemotronHConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
if config.attention_head_dim is not None: |
|
self.head_dim = config.attention_head_dim |
|
else: |
|
self.head_dim = config.hidden_size // config.num_attention_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.is_causal = True |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.o_proj = nn.Linear(self.head_dim * self.num_heads, self.hidden_size, bias=config.attention_bias) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
if past_key_value is not None: |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
attn_output = attn_output.view(bsz, q_len, self.num_heads * self.head_dim) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
|
|
|
|
class NemotronHFlashAttention2(NemotronHAttention): |
|
""" |
|
Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
): |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
if past_key_value is not None: |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attn_output = _flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
sliding_window=getattr(self.config, "sliding_window", None), |
|
is_causal=self.is_causal, |
|
use_top_left_mask=self._flash_attn_uses_top_left_mask, |
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
|
class NemotronHSdpaAttention(NemotronHAttention): |
|
""" |
|
Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"NemotronHModel is using NemotronHSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
if past_key_value is not None: |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
|
|
is_causal = True if self.is_causal and causal_mask is None and q_len > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
NEMOTRONH_ATTENTION_CLASSES = { |
|
"eager": NemotronHAttention, |
|
"flash_attention_2": NemotronHFlashAttention2, |
|
"sdpa": NemotronHSdpaAttention, |
|
} |
|
|
|
|
|
class NemotronHPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = NemotronHConfig |
|
base_model_prefix = "backbone" |
|
_no_split_modules = ["NemotronHBlock"] |
|
supports_gradient_checkpointing = True |
|
_is_stateful = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, NemotronHMamba2Mixer): |
|
module.A_log._no_weight_decay = True |
|
module.D._no_weight_decay = True |
|
|
|
dt = torch.exp( |
|
torch.rand(self.config.mamba_num_heads) |
|
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) |
|
+ math.log(self.config.time_step_min) |
|
).clamp(min=self.config.time_step_floor) |
|
|
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
with torch.no_grad(): |
|
module.dt_bias.copy_(inv_dt) |
|
module.dt_bias._no_reinit = True |
|
|
|
if isinstance(module, nn.Linear): |
|
if module.bias is not None: |
|
if not getattr(module.bias, "_no_reinit", False): |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
nn.init.normal_(module.weight, std=self.config.initializer_range) |
|
|
|
|
|
if self.config.rescale_prenorm_residual: |
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, p in module.named_parameters(): |
|
if name in ["out_proj.weight"]: |
|
|
|
|
|
|
|
|
|
nn.init.kaiming_uniform_(p, a=math.sqrt(5)) |
|
with torch.no_grad(): |
|
p /= math.sqrt(self.config.num_hidden_layers) |
|
|
|
|
|
@dataclass |
|
|
|
class NemotronHOutput(ModelOutput): |
|
""" |
|
Class for the NemotronH model outputs. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
cache_params (`HybridMambaAttentionDynamicCache`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
|
|
Includes both the State space model state matrices after the selective scan, and the Convolutional states |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
""" |
|
|
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
cache_params: Optional[HybridMambaAttentionDynamicCache] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
|
|
class NemotronHCausalLMOutput(MoeCausalLMOutputWithPast): |
|
""" |
|
Base class for causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
cache_params (`HybridMambaAttentionDynamicCache`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
|
|
Includes both the State space model state matrices after the selective scan, and the Convolutional states |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
NEMOTRONH_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`NemotronHConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
NEMOTRONH_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as |
|
`input_ids`. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
position_ids (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. |
|
cache_params (`HybridMambaAttentionDynamicCache`, *optional*): |
|
If passed along, the model uses the previous state in all the blocks (which will give the output for the |
|
`input_ids` provided as if the model add `state_input_ids + input_ids` as context). |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
The position of the current input in the cache. This is used to ensure that the cache is correctly updated. |
|
If `cache_params` is passed, `cache_position` should also be passed. |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare NemotronH Model transformer outputting raw hidden-states without any specific head on top.", |
|
NEMOTRONH_START_DOCSTRING, |
|
) |
|
class NemotronHModel(NemotronHPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.layers = nn.ModuleList([NemotronHBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]) |
|
|
|
self.gradient_checkpointing = False |
|
self.norm_f = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self._register_load_state_dict_pre_hook(self.load_hook) |
|
self.post_init() |
|
|
|
def load_hook(self, state_dict, prefix, *args): |
|
for k in state_dict: |
|
if "embedding." in k: |
|
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k) |
|
break |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embeddings = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=NemotronHOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
cache_params: Optional[HybridMambaAttentionDynamicCache] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, NemotronHOutput]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embeddings(input_ids) |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." |
|
) |
|
use_cache = False |
|
|
|
|
|
if use_cache and cache_params is None: |
|
logger.warning_once( |
|
"NemotronH requires an initialized `NemotronHHybridDynamicCache` to return a cache. None was " |
|
"provided, so no cache will be returned." |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if cache_position is None: |
|
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device) |
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) |
|
mamba_mask = self._update_mamba_mask(attention_mask, cache_position) |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for layer_idx, mixer_block in enumerate(self.layers): |
|
|
|
if mixer_block.block_type == "mamba": |
|
layer_mask = mamba_mask |
|
elif mixer_block.block_type == "attention": |
|
layer_mask = causal_mask |
|
elif mixer_block.block_type == "mlp": |
|
layer_mask = None |
|
else: |
|
raise ValueError(f"Invalid block_type: {self.block_type}") |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
hidden_states = self._gradient_checkpointing_func( |
|
mixer_block.__call__, hidden_states, cache_params, cache_position, layer_mask |
|
) |
|
else: |
|
hidden_states = mixer_block( |
|
hidden_states, |
|
cache_params=cache_params, |
|
cache_position=cache_position, |
|
attention_mask=layer_mask, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = self.norm_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None) |
|
|
|
return NemotronHOutput( |
|
last_hidden_state=hidden_states, |
|
cache_params=cache_params if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
def _update_causal_mask(self, attention_mask, input_tensor, cache_position): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
target_length = cache_position[-1] + 1 |
|
|
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
if attention_mask.dim() == 2: |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) |
|
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
def _update_mamba_mask(self, attention_mask, cache_position): |
|
""" |
|
No need for zeroing states when |
|
1. Cached forward |
|
2. Attending to all inputs |
|
""" |
|
mamba_mask = attention_mask |
|
if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)): |
|
mamba_mask = None |
|
return mamba_mask |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The NEMOTRONH Model transformer with a language modeling head on top (linear layer with weights not tied to the input |
|
embeddings). |
|
""", |
|
NEMOTRONH_START_DOCSTRING, |
|
) |
|
class NemotronHForCausalLM(NemotronHPreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.backbone = NemotronHModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.backbone.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
return self.backbone.set_input_embeddings(new_embeddings) |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
|
|
|
|
empty_past_kv = past_key_values is None |
|
|
|
|
|
|
|
|
|
|
|
|
|
if not empty_past_kv: |
|
if ( |
|
inputs_embeds is not None |
|
or cache_position[-1] >= input_ids.shape[1] |
|
): |
|
input_ids = input_ids[:, -cache_position.shape[0] :] |
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
input_ids = input_ids[:, cache_position] |
|
else: |
|
past_key_values = HybridMambaAttentionDynamicCache( |
|
self.config, input_ids.shape[0], self.dtype, device=self.device |
|
) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if not empty_past_kv: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and empty_past_kv: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids.contiguous()} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
"logits_to_keep": self.config.num_logits_to_keep, |
|
"cache_position": cache_position, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=NemotronHCausalLMOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[HybridMambaAttentionDynamicCache] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
cache_position: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, NemotronHCausalLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
nemotron_h_outputs = self.backbone( |
|
input_ids, |
|
cache_params=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
attention_mask=attention_mask, |
|
) |
|
hidden_states = nemotron_h_outputs[0] |
|
|
|
|
|
|
|
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(logits.device) |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + nemotron_h_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return NemotronHCausalLMOutput( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=nemotron_h_outputs.cache_params, |
|
hidden_states=nemotron_h_outputs.hidden_states, |
|
attentions=nemotron_h_outputs.attentions, |
|
) |
|
|