|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NemotronH model configuration""" |
|
|
|
import re |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class NemotronHConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`NemotronHModel`]. It is used to instantiate a |
|
NemotronH model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the NemotronH-v0.1 model. |
|
|
|
[todo](todo) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 131072): |
|
Vocabulary size of the NemotronH model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`NemotronHModel`] |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the |
|
model has a output word embedding layer. |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 21504): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 52): |
|
Number of hidden layers in the Transformer encoder. |
|
hybrid_override_pattern (`str`, *optional*, defaults to `"M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"`): |
|
The pattern of the hybrid model. The pattern is a string of characters where each character represents M: Mamba2, *: Attention, -: MLP |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
attention_head_dim (`int`, *optional*, defaults to 128): |
|
Dimension of each attention head. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. |
|
mlp_hidden_act (`str`, *optional*, defaults to "relu2"): |
|
The non-linear activation function in the MLP layers. |
|
attention_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use bias in attention layers. |
|
mlp_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use bias in MLP layers. |
|
use_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use bias in the model. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon used by the layer normalization layers. |
|
residual_in_fp32 (`bool`, *optional*, defaults to `False`): |
|
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1): |
|
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an |
|
integer value, only last `num_logits_to_keep` logits will be calculated. |
|
pad_token_id (`int`, *optional*, defaults to 0): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
sliding_window (`int`, *optional*, defaults to None): |
|
Sliding window attention window size. |
|
max_position_embeddings (`int`, *optional*, defaults to 4096): |
|
The maximum sequence length that this model might ever be used with. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
hidden_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the hidden states. |
|
use_mamba_kernels (`bool`, *optional*, defaults to `True`): |
|
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and |
|
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. |
|
ssm_state_size (`int`, *optional*, defaults to 128): |
|
The dimension of the mamba state space latents. |
|
mamba_num_heads (`int`, *optional*, defaults to 128): |
|
Number of heads in Mamba layers. |
|
mamba_n_groups (`int`, *optional*, defaults to 8): |
|
Number of groups in Mamba layers. |
|
mamba_head_dim (`int`, *optional*, defaults to 64): |
|
Dimension of each Mamba head. |
|
mamba_d_conv (`int`, *optional*, defaults to 4): |
|
The size of the mamba convolution kernel. |
|
mamba_expand (`int`, *optional*, defaults to 2): |
|
Expanding factor used to determine the mamba intermediate size. |
|
mamba_hidden_act (`str`, *optional*, defaults to "silu"): |
|
The non-linear activation function in the Mamba layers. |
|
mamba_dt_min (`float`, *optional*, defaults to 0.001): |
|
Minimum value for the time step in Mamba. |
|
mamba_dt_max (`float`, *optional*, defaults to 0.1): |
|
Maximum value for the time step in Mamba. |
|
mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))): |
|
Limits for the time step in Mamba. |
|
mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4): |
|
Floor value for time step initialization in Mamba. |
|
mamba_conv_bias (`bool`, *optional*, defaults to `True`): |
|
Whether to use bias in the convolution layer of the mamba mixer block. |
|
mamba_proj_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to use bias in the input and output projections of the mamba mixer block. |
|
mamba_chunk_size (`int`, *optional*, defaults to 256): |
|
Size of chunks for Mamba processing. |
|
rescale_prenorm_residual (`bool`, *optional*, defaults to `True`): |
|
Whether to rescale the pre-normalization residual connections. |
|
""" |
|
|
|
model_type = "nemotron_h" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=131072, |
|
tie_word_embeddings=False, |
|
hidden_size=4096, |
|
intermediate_size=21504, |
|
num_hidden_layers=52, |
|
hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-", |
|
num_attention_heads=32, |
|
attention_head_dim=128, |
|
num_key_value_heads=8, |
|
mlp_hidden_act="relu2", |
|
attention_bias=False, |
|
mlp_bias=False, |
|
use_bias=False, |
|
initializer_range=0.02, |
|
layer_norm_epsilon=1e-5, |
|
residual_in_fp32=False, |
|
use_cache=True, |
|
num_logits_to_keep=1, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
sliding_window=None, |
|
max_position_embeddings=4096, |
|
attention_dropout=0.0, |
|
hidden_dropout=0.0, |
|
use_mamba_kernels=True, |
|
ssm_state_size=128, |
|
mamba_num_heads=128, |
|
mamba_n_groups=8, |
|
mamba_head_dim=64, |
|
mamba_d_conv=4, |
|
mamba_expand=2, |
|
mamba_hidden_act="silu", |
|
mamba_dt_min=0.001, |
|
mamba_dt_max=0.1, |
|
mamba_dt_limit=(0.0, float("inf")), |
|
mamba_dt_init_floor=1e-4, |
|
mamba_conv_bias=True, |
|
mamba_proj_bias=False, |
|
mamba_chunk_size=256, |
|
rescale_prenorm_residual=True, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.tie_word_embeddings = tie_word_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.hybrid_override_pattern = hybrid_override_pattern |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
self.sliding_window = sliding_window |
|
self.max_position_embeddings = max_position_embeddings |
|
self.attention_dropout = attention_dropout |
|
self.hidden_dropout = hidden_dropout |
|
|
|
|
|
|
|
assert len(self.hybrid_override_pattern) == self.num_hidden_layers, "hybrid_override_pattern must have the same length as num_hidden_layers" |
|
assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), "hybrid_override_pattern must only contain characters 'M', '*', or '-'" |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.mlp_hidden_act = mlp_hidden_act |
|
self.attention_bias = attention_bias |
|
self.mlp_bias = mlp_bias |
|
self.use_bias = use_bias |
|
self.initializer_range = initializer_range |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.residual_in_fp32 = residual_in_fp32 |
|
|
|
self.use_cache = use_cache |
|
self.num_logits_to_keep = num_logits_to_keep |
|
|
|
self.use_mamba_kernels = use_mamba_kernels |
|
self.n_groups = mamba_n_groups |
|
self.mamba_head_dim = mamba_head_dim |
|
self.ssm_state_size = ssm_state_size |
|
self.mamba_num_heads = mamba_num_heads |
|
self.conv_kernel = mamba_d_conv |
|
self.expand = mamba_expand |
|
self.mamba_hidden_act = mamba_hidden_act |
|
self.time_step_min = mamba_dt_min |
|
self.time_step_max = mamba_dt_max |
|
self.time_step_limit = mamba_dt_limit |
|
self.time_step_floor = mamba_dt_init_floor |
|
self.use_conv_bias = mamba_conv_bias |
|
self.mamba_proj_bias = mamba_proj_bias |
|
self.chunk_size = mamba_chunk_size |
|
self.rescale_prenorm_residual = rescale_prenorm_residual |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def layers_block_type(self): |
|
return [ |
|
"mamba" if self.hybrid_override_pattern[i] == "M" else |
|
"attention" if self.hybrid_override_pattern[i] == "*" else "mlp" |
|
for i in range(self.num_hidden_layers)] |