File size: 27,908 Bytes
93ce109 76ac99c 93ce109 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
#!/usr/bin/env python3
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import torch
import torch.nn as nn
from timm.models.registry import register_model
import math
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
from timm.models._builder import resolve_pretrained_cfg
try:
from timm.models._builder import _update_default_kwargs as update_args
except:
from timm.models._builder import _update_default_model_kwargs as update_args
from timm.models.vision_transformer import Mlp, PatchEmbed
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
import torch.nn.functional as F
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
from einops import rearrange, repeat
from transformers import PreTrainedModel
from .configuration_mambavision import MambaVisionConfig
def _cfg(url='', **kwargs):
return {'url': url,
'num_classes': 1000,
'input_size': (3, 224, 224),
'pool_size': None,
'crop_pct': 0.875,
'interpolation': 'bicubic',
'fixed_input_size': True,
'mean': (0.485, 0.456, 0.406),
'std': (0.229, 0.224, 0.225),
**kwargs
}
default_cfgs = {
'mamba_vision_T': _cfg(url='https://huggingface.co/nvidia/MambaVision-T-1K/resolve/main/mambavision_tiny_1k.pth.tar',
crop_pct=1.0,
input_size=(3, 224, 224),
crop_mode='center'),
'mamba_vision_T2': _cfg(url='https://huggingface.co/nvidia/MambaVision-T2-1K/resolve/main/mambavision_tiny2_1k.pth.tar',
crop_pct=0.98,
input_size=(3, 224, 224),
crop_mode='center'),
'mamba_vision_S': _cfg(url='https://huggingface.co/nvidia/MambaVision-S-1K/resolve/main/mambavision_small_1k.pth.tar',
crop_pct=0.93,
input_size=(3, 224, 224),
crop_mode='center'),
'mamba_vision_B': _cfg(url='https://huggingface.co/nvidia/MambaVision-B-1K/resolve/main/mambavision_base_1k.pth.tar',
crop_pct=1.0,
input_size=(3, 224, 224),
crop_mode='center'),
'mamba_vision_L': _cfg(url='https://huggingface.co/nvidia/MambaVision-L-1K/resolve/main/mambavision_large_1k.pth.tar',
crop_pct=1.0,
input_size=(3, 224, 224),
crop_mode='center'),
'mamba_vision_L2': _cfg(url='https://huggingface.co/nvidia/MambaVision-L2-1K/resolve/main/mambavision_large2_1k.pth.tar',
crop_pct=1.0,
input_size=(3, 224, 224),
crop_mode='center')
}
def window_partition(x, window_size):
"""
Args:
x: (B, C, H, W)
window_size: window size
h_w: Height of window
w_w: Width of window
Returns:
local window features (num_windows*B, window_size*window_size, C)
"""
B, C, H, W = x.shape
x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: local window features (num_windows*B, window_size, window_size, C)
window_size: Window size
H: Height of image
W: Width of image
Returns:
x: (B, C, H, W)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.reshape(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], H, W)
return x
def _load_state_dict(module, state_dict, strict=False, logger=None):
"""Load state_dict to a module.
This method is modified from :meth:`torch.nn.Module.load_state_dict`.
Default value for ``strict`` is set to ``False`` and the message for
param mismatch will be shown even if strict is False.
Args:
module (Module): Module that receives the state_dict.
state_dict (OrderedDict): Weights.
strict (bool): whether to strictly enforce that the keys
in :attr:`state_dict` match the keys returned by this module's
:meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
logger (:obj:`logging.Logger`, optional): Logger to log the error
message. If not specified, print function will be used.
"""
unexpected_keys = []
all_missing_keys = []
err_msg = []
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(
prefix[:-1], {})
module._load_from_state_dict(state_dict, prefix, local_metadata, True,
all_missing_keys, unexpected_keys,
err_msg)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(module)
load = None
missing_keys = [
key for key in all_missing_keys if 'num_batches_tracked' not in key
]
if unexpected_keys:
err_msg.append('unexpected key in source '
f'state_dict: {", ".join(unexpected_keys)}\n')
if missing_keys:
err_msg.append(
f'missing keys in source state_dict: {", ".join(missing_keys)}\n')
if len(err_msg) > 0:
err_msg.insert(
0, 'The model and loaded state dict do not match exactly\n')
err_msg = '\n'.join(err_msg)
if strict:
raise RuntimeError(err_msg)
elif logger is not None:
logger.warning(err_msg)
else:
print(err_msg)
def _load_checkpoint(model,
filename,
map_location='cpu',
strict=False,
logger=None):
"""Load checkpoint from a file or URI.
Args:
model (Module): Module to load checkpoint.
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
details.
map_location (str): Same as :func:`torch.load`.
strict (bool): Whether to allow different params for the model and
checkpoint.
logger (:mod:`logging.Logger` or None): The logger for error message.
Returns:
dict or OrderedDict: The loaded checkpoint.
"""
checkpoint = torch.load(filename, map_location=map_location)
if not isinstance(checkpoint, dict):
raise RuntimeError(
f'No state_dict found in checkpoint file {filename}')
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
if list(state_dict.keys())[0].startswith('module.'):
state_dict = {k[7:]: v for k, v in state_dict.items()}
if sorted(list(state_dict.keys()))[0].startswith('encoder'):
state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')}
_load_state_dict(model, state_dict, strict, logger)
return checkpoint
class Downsample(nn.Module):
"""
Down-sampling block"
"""
def __init__(self,
dim,
keep_dim=False,
):
"""
Args:
dim: feature size dimension.
norm_layer: normalization layer.
keep_dim: bool argument for maintaining the resolution.
"""
super().__init__()
if keep_dim:
dim_out = dim
else:
dim_out = 2 * dim
self.reduction = nn.Sequential(
nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False),
)
def forward(self, x):
x = self.reduction(x)
return x
class PatchEmbed(nn.Module):
"""
Patch embedding block"
"""
def __init__(self, in_chans=3, in_dim=64, dim=96):
"""
Args:
in_chans: number of input channels.
dim: feature size dimension.
"""
# in_dim = 1
super().__init__()
self.proj = nn.Identity()
self.conv_down = nn.Sequential(
nn.Conv2d(in_chans, in_dim, 3, 2, 1, bias=False),
nn.BatchNorm2d(in_dim, eps=1e-4),
nn.ReLU(),
nn.Conv2d(in_dim, dim, 3, 2, 1, bias=False),
nn.BatchNorm2d(dim, eps=1e-4),
nn.ReLU()
)
def forward(self, x):
x = self.proj(x)
x = self.conv_down(x)
return x
class ConvBlock(nn.Module):
def __init__(self, dim,
drop_path=0.,
layer_scale=None,
kernel_size=3):
super().__init__()
self.conv1 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
self.norm1 = nn.BatchNorm2d(dim, eps=1e-5)
self.act1 = nn.GELU(approximate= 'tanh')
self.conv2 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
self.norm2 = nn.BatchNorm2d(dim, eps=1e-5)
self.layer_scale = layer_scale
if layer_scale is not None and type(layer_scale) in [int, float]:
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
self.layer_scale = True
else:
self.layer_scale = False
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.conv1(x)
x = self.norm1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.norm2(x)
if self.layer_scale:
x = x * self.gamma.view(1, -1, 1, 1)
x = input + self.drop_path(x)
return x
class MambaVisionMixer(nn.Module):
def __init__(
self,
d_model,
d_state=16,
d_conv=4,
expand=2,
dt_rank="auto",
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
conv_bias=True,
bias=False,
use_fast_path=True,
layer_idx=None,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.expand = expand
self.d_inner = int(self.expand * self.d_model)
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
self.use_fast_path = use_fast_path
self.layer_idx = layer_idx
self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs)
self.x_proj = nn.Linear(
self.d_inner//2, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
)
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner//2, bias=True, **factory_kwargs)
dt_init_std = self.dt_rank**-0.5 * dt_scale
if dt_init == "constant":
nn.init.constant_(self.dt_proj.weight, dt_init_std)
elif dt_init == "random":
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
else:
raise NotImplementedError
dt = torch.exp(
torch.rand(self.d_inner//2, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
).clamp(min=dt_init_floor)
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
self.dt_proj.bias.copy_(inv_dt)
self.dt_proj.bias._no_reinit = True
A = repeat(
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=self.d_inner//2,
).contiguous()
A_log = torch.log(A)
self.A_log = nn.Parameter(A_log)
self.A_log._no_weight_decay = True
self.D = nn.Parameter(torch.ones(self.d_inner//2, device=device))
self.D._no_weight_decay = True
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
self.conv1d_x = nn.Conv1d(
in_channels=self.d_inner//2,
out_channels=self.d_inner//2,
bias=conv_bias//2,
kernel_size=d_conv,
groups=self.d_inner//2,
**factory_kwargs,
)
self.conv1d_z = nn.Conv1d(
in_channels=self.d_inner//2,
out_channels=self.d_inner//2,
bias=conv_bias//2,
kernel_size=d_conv,
groups=self.d_inner//2,
**factory_kwargs,
)
def forward(self, hidden_states):
"""
hidden_states: (B, L, D)
Returns: same shape as hidden_states
"""
_, seqlen, _ = hidden_states.shape
xz = self.in_proj(hidden_states)
xz = rearrange(xz, "b l d -> b d l")
x, z = xz.chunk(2, dim=1)
A = -torch.exp(self.A_log.float())
x = F.silu(F.conv1d(input=x, weight=self.conv1d_x.weight, bias=self.conv1d_x.bias, padding='same', groups=self.d_inner//2))
z = F.silu(F.conv1d(input=z, weight=self.conv1d_z.weight, bias=self.conv1d_z.bias, padding='same', groups=self.d_inner//2))
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d"))
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
dt = rearrange(self.dt_proj(dt), "(b l) d -> b d l", l=seqlen)
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
y = selective_scan_fn(x,
dt,
A,
B,
C,
self.D.float(),
z=None,
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
return_last_state=None)
y = torch.cat([y, z], dim=1)
y = rearrange(y, "b d l -> b l d")
out = self.out_proj(y)
return out
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_norm=False,
attn_drop=0.,
proj_drop=0.,
norm_layer=nn.LayerNorm,
):
super().__init__()
assert dim % num_heads == 0
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = True
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if self.fused_attn:
x = F.scaled_dot_product_attention(
q, k, v,
dropout_p=self.attn_drop.p,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self,
dim,
num_heads,
counter,
transformer_blocks,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=False,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
Mlp_block=Mlp,
layer_scale=None,
):
super().__init__()
self.norm1 = norm_layer(dim)
if counter in transformer_blocks:
self.mixer = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
norm_layer=norm_layer,
)
else:
self.mixer = MambaVisionMixer(d_model=dim,
d_state=8,
d_conv=3,
expand=1
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
self.gamma_1 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
self.gamma_2 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
def forward(self, x):
x = x + self.drop_path(self.gamma_1 * self.mixer(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class MambaVisionLayer(nn.Module):
"""
MambaVision layer"
"""
def __init__(self,
dim,
depth,
num_heads,
window_size,
conv=False,
downsample=True,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
layer_scale=None,
layer_scale_conv=None,
transformer_blocks = [],
):
"""
Args:
dim: feature size dimension.
depth: number of layers in each stage.
window_size: window size in each stage.
conv: bool argument for conv stage flag.
downsample: bool argument for down-sampling.
mlp_ratio: MLP ratio.
num_heads: number of heads in each stage.
qkv_bias: bool argument for query, key, value learnable bias.
qk_scale: bool argument to scaling query, key.
drop: dropout rate.
attn_drop: attention dropout rate.
drop_path: drop path rate.
norm_layer: normalization layer.
layer_scale: layer scaling coefficient.
layer_scale_conv: conv layer scaling coefficient.
transformer_blocks: list of transformer blocks.
"""
super().__init__()
self.conv = conv
self.transformer_block = False
if conv:
self.blocks = nn.ModuleList([ConvBlock(dim=dim,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
layer_scale=layer_scale_conv)
for i in range(depth)])
self.transformer_block = False
else:
self.transformer_block = True
self.blocks = nn.ModuleList([Block(dim=dim,
counter=i,
transformer_blocks=transformer_blocks,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
layer_scale=layer_scale)
for i in range(depth)])
self.transformer_block = True
self.downsample = None if not downsample else Downsample(dim=dim)
self.do_gt = False
self.window_size = window_size
def forward(self, x):
_, _, H, W = x.shape
if self.transformer_block:
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
if pad_r > 0 or pad_b > 0:
x = torch.nn.functional.pad(x, (0,pad_r,0,pad_b))
_, _, Hp, Wp = x.shape
else:
Hp, Wp = H, W
x = window_partition(x, self.window_size)
for _, blk in enumerate(self.blocks):
x = blk(x)
if self.transformer_block:
x = window_reverse(x, self.window_size, Hp, Wp)
if pad_r > 0 or pad_b > 0:
x = x[:, :, :H, :W].contiguous()
if self.downsample is None:
return x, x
return self.downsample(x), x
class MambaVision(nn.Module):
"""
MambaVision,
"""
def __init__(self,
dim,
in_dim,
depths,
window_size,
mlp_ratio,
num_heads,
drop_path_rate=0.2,
in_chans=3,
num_classes=1000,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
layer_scale=None,
layer_scale_conv=None,
**kwargs):
"""
Args:
dim: feature size dimension.
depths: number of layers in each stage.
window_size: window size in each stage.
mlp_ratio: MLP ratio.
num_heads: number of heads in each stage.
drop_path_rate: drop path rate.
in_chans: number of input channels.
num_classes: number of classes.
qkv_bias: bool argument for query, key, value learnable bias.
qk_scale: bool argument to scaling query, key.
drop_rate: dropout rate.
attn_drop_rate: attention dropout rate.
norm_layer: normalization layer.
layer_scale: layer scaling coefficient.
layer_scale_conv: conv layer scaling coefficient.
"""
super().__init__()
num_features = int(dim * 2 ** (len(depths) - 1))
self.num_classes = num_classes
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
self.levels = nn.ModuleList()
for i in range(len(depths)):
conv = True if (i == 0 or i == 1) else False
level = MambaVisionLayer(dim=int(dim * 2 ** i),
depth=depths[i],
num_heads=num_heads[i],
window_size=window_size[i],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
conv=conv,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
downsample=(i < 3),
layer_scale=layer_scale,
layer_scale_conv=layer_scale_conv,
transformer_blocks=list(range(depths[i]//2+1, depths[i])) if depths[i]%2!=0 else list(range(depths[i]//2, depths[i])),
)
self.levels.append(level)
self.norm = nn.BatchNorm2d(num_features)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, LayerNorm2d):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'rpb'}
def forward_features(self, x):
x = self.patch_embed(x)
outs = []
for level in self.levels:
x, xo = level(x)
outs.append(xo)
x = self.norm(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
return x, outs
def forward(self, x):
x, outs = self.forward_features(x)
x = self.head(x)
return x
def _load_state_dict(self,
pretrained,
strict: bool = False):
_load_checkpoint(self,
pretrained,
strict=strict)
class MambaVisionModel(PreTrainedModel):
config_class = MambaVisionConfig
def __init__(self, config):
super().__init__(config)
self.model = MambaVision(
depths=config.depths,
num_heads=config.num_heads,
window_size=config.window_size,
dim=config.dim,
in_dim=config.in_dim,
mlp_ratio=config.mlp_ratio,
)
def forward(self, tensor):
return self.model.forward_features(tensor)
class MambaVisionModelForImageClassification(PreTrainedModel):
config_class = MambaVisionConfig
def __init__(self, config):
super().__init__(config)
self.model = MambaVision(
depths=config.depths,
num_heads=config.num_heads,
window_size=config.window_size,
dim=config.dim,
in_dim=config.in_dim,
mlp_ratio=config.mlp_ratio,
)
def forward(self, tensor, labels=None):
logits = self.model(tensor)
if labels is not None:
loss = torch.nn.cross_entropy(logits, labels)
return {"loss": loss, "logits": logits}
return {"logits": logits} |