jiaqiz commited on
Commit
1a72959
·
verified ·
1 Parent(s): 75dfd78

add link to technical report

Browse files
Files changed (1) hide show
  1. README.md +2 -1
README.md CHANGED
@@ -28,7 +28,7 @@ The model underwent a multi-phase post-training process to enhance both its reas
28
 
29
  This model is ready for commercial use.
30
 
31
- For more details on how the model was trained, please see [this blog](https://developer.nvidia.com/blog/build-enterprise-ai-agents-with-advanced-open-nvidia-llama-nemotron-reasoning-models/).
32
 
33
  ![Training Flow](./training_flowchart.png)
34
 
@@ -55,6 +55,7 @@ Developers designing AI Agent systems, chatbots, RAG systems, and other AI-power
55
 
56
  ## References
57
 
 
58
  * [\[2502.00203\] Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment](https://arxiv.org/abs/2502.00203)
59
  * [\[2411.19146\]Puzzle: Distillation-Based NAS for Inference-Optimized LLMs](https://arxiv.org/abs/2411.19146)
60
  * [\[2503.18908\]FFN Fusion: Rethinking Sequential Computation in Large Language Models](https://arxiv.org/abs/2503.18908)
 
28
 
29
  This model is ready for commercial use.
30
 
31
+ For more details on how the model was trained, please see our [technical report](https://arxiv.org/abs/2505.00949) and [blog](https://developer.nvidia.com/blog/build-enterprise-ai-agents-with-advanced-open-nvidia-llama-nemotron-reasoning-models/).
32
 
33
  ![Training Flow](./training_flowchart.png)
34
 
 
55
 
56
  ## References
57
 
58
+ * [\[2505.00949\] Llama-Nemotron: Efficient Reasoning Models](https://arxiv.org/abs/2505.00949)
59
  * [\[2502.00203\] Reward-aware Preference Optimization: A Unified Mathematical Framework for Model Alignment](https://arxiv.org/abs/2502.00203)
60
  * [\[2411.19146\]Puzzle: Distillation-Based NAS for Inference-Optimized LLMs](https://arxiv.org/abs/2411.19146)
61
  * [\[2503.18908\]FFN Fusion: Rethinking Sequential Computation in Large Language Models](https://arxiv.org/abs/2503.18908)