|
|
|
|
|
import json |
|
import re |
|
from collections.abc import Sequence |
|
from typing import Union |
|
|
|
import partial_json_parser |
|
from partial_json_parser.core.options import Allow |
|
|
|
from vllm.entrypoints.openai.protocol import ( |
|
ChatCompletionRequest, |
|
DeltaFunctionCall, DeltaMessage, |
|
DeltaToolCall, |
|
ExtractedToolCallInformation, |
|
FunctionCall, |
|
ToolCall, |
|
) |
|
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import ( |
|
ToolParser, |
|
ToolParserManager, |
|
) |
|
from vllm.logger import init_logger |
|
from vllm.transformers_utils.tokenizer import AnyTokenizer |
|
from vllm.utils import random_uuid |
|
|
|
logger = init_logger(__name__) |
|
|
|
|
|
@ToolParserManager.register_module("llama_nemotron_json") |
|
class LlamaNemotronJSONToolParser(ToolParser): |
|
|
|
def __init__(self, tokenizer: AnyTokenizer): |
|
super().__init__(tokenizer) |
|
|
|
self.current_tool_name_sent: bool = False |
|
self.prev_tool_call_arr: list[dict] = [] |
|
self.current_tool_id: int = -1 |
|
self.streamed_args_for_tool: list[str] = [] |
|
|
|
self.tool_call_start_token: str = "<TOOLCALL>" |
|
self.tool_call_end_token: str = "</TOOLCALL>" |
|
|
|
self.tool_call_regex = re.compile(r"<TOOLCALL>(.*?)</TOOLCALL>", re.DOTALL) |
|
|
|
def extract_tool_calls( |
|
self, |
|
model_output: str, |
|
request: ChatCompletionRequest, |
|
) -> ExtractedToolCallInformation: |
|
|
|
if self.tool_call_start_token not in model_output: |
|
return ExtractedToolCallInformation( |
|
tools_called=False, |
|
tool_calls=[], |
|
content=model_output, |
|
) |
|
|
|
else: |
|
|
|
try: |
|
str_tool_calls = self.tool_call_regex.findall(model_output)[0].strip() |
|
if not str_tool_calls.startswith("["): |
|
str_tool_calls = "[" + str_tool_calls |
|
if not str_tool_calls.endswith("]"): |
|
str_tool_calls = "]" + str_tool_calls |
|
json_tool_calls = json.loads(str_tool_calls) |
|
tool_calls = [] |
|
for tool_call in json_tool_calls: |
|
try: |
|
tool_calls.append(ToolCall( |
|
type="function", |
|
function=FunctionCall( |
|
name=tool_call["name"], |
|
arguments=json.dumps(tool_call["arguments"], ensure_ascii=False) \ |
|
if isinstance(tool_call["arguments"], dict) else tool_call["arguments"], |
|
), |
|
)) |
|
except: |
|
continue |
|
|
|
content = model_output[:model_output.rfind(self.tool_call_start_token)] |
|
|
|
return ExtractedToolCallInformation( |
|
tools_called=True, |
|
tool_calls=tool_calls, |
|
content=content if content else None, |
|
) |
|
|
|
except Exception: |
|
logger.exception(f"Error in extracting tool call from response. Response: {model_output}") |
|
return ExtractedToolCallInformation( |
|
tools_called=False, |
|
tool_calls=[], |
|
content=model_output, |
|
) |
|
|
|
def extract_tool_calls_streaming( |
|
self, |
|
previous_text: str, |
|
current_text: str, |
|
delta_text: str, |
|
previous_token_ids: Sequence[int], |
|
current_token_ids: Sequence[int], |
|
delta_token_ids: Sequence[int], |
|
request: ChatCompletionRequest, |
|
) -> Union[DeltaMessage, None]: |
|
|
|
raise NotImplementedError("Tool calling is not supported in streaming mode!") |
|
|