--- library_name: transformers language: - ar license: apache-2.0 base_model: tarteel-ai/whisper-tiny-ar-quran tags: - generated_from_trainer datasets: - numan98/synth-incorrect-verses metrics: - wer model-index: - name: Nextayah Tiny Whisper Finetuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Synthetic Incorrect Verses type: numan98/synth-incorrect-verses config: default split: None args: 'split: test' metrics: - name: Wer type: wer value: 17.25043782837128 --- # Nextayah Tiny Whisper Finetuned This model is a fine-tuned version of [tarteel-ai/whisper-tiny-ar-quran](https://huggingface.co/tarteel-ai/whisper-tiny-ar-quran) on the Synthetic Incorrect Verses dataset. It achieves the following results on the evaluation set: - Loss: 0.0921 - Wer: 17.2504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0217 | 8.7719 | 500 | 0.1236 | 22.5044 | | 0.0025 | 17.5439 | 1000 | 0.1063 | 21.0158 | | 0.0001 | 26.3158 | 1500 | 0.0910 | 17.4256 | | 0.0001 | 35.0877 | 2000 | 0.0921 | 17.2504 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0