--- library_name: peft base_model: Xenova/tiny-random-Phi3ForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 8f68d8b0-2c28-488e-88c7-95dae12ed223 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Xenova/tiny-random-Phi3ForCausalLM bf16: true chat_template: llama3 dataloader_num_workers: 24 dataset_prepared_path: null datasets: - data_files: - 59716c9c4c29f66a_train_data.json ds_type: json format: custom path: /workspace/input_data/59716c9c4c29f66a_train_data.json type: field_input: text_encoding field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: nttx/8f68d8b0-2c28-488e-88c7-95dae12ed223 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1500 micro_batch_size: 4 mlflow_experiment_name: /tmp/59716c9c4c29f66a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e59de8f8-41d9-4aa7-9fa3-2f4cd7c59f6b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e59de8f8-41d9-4aa7-9fa3-2f4cd7c59f6b warmup_steps: 50 weight_decay: 0.1 xformers_attention: null ```

# 8f68d8b0-2c28-488e-88c7-95dae12ed223 This model is a fine-tuned version of [Xenova/tiny-random-Phi3ForCausalLM](https://huggingface.co/Xenova/tiny-random-Phi3ForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.7743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0017 | 1 | 10.3561 | | 9.8747 | 0.2604 | 150 | 9.8336 | | 9.8098 | 0.5208 | 300 | 9.7942 | | 9.7926 | 0.7812 | 450 | 9.7823 | | 9.781 | 1.0417 | 600 | 9.7785 | | 9.7784 | 1.3021 | 750 | 9.7763 | | 9.7775 | 1.5625 | 900 | 9.7751 | | 9.7766 | 1.8229 | 1050 | 9.7747 | | 9.7743 | 2.0833 | 1200 | 9.7746 | | 9.771 | 2.3438 | 1350 | 9.7743 | | 9.7759 | 2.6042 | 1500 | 9.7743 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1