update model card README.md
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -45,18 +45,37 @@ The following hyperparameters were used during training:
|
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
-
- num_epochs:
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
### Framework versions
|
58 |
|
59 |
- Transformers 4.30.2
|
60 |
-
- Pytorch 2.0.1
|
61 |
- Datasets 2.13.1
|
62 |
- Tokenizers 0.13.3
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8042
|
22 |
+
- Accuracy: 0.86
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 20
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| 2.0168 | 1.0 | 113 | 2.0642 | 0.45 |
|
55 |
+
| 1.4374 | 2.0 | 226 | 1.4358 | 0.64 |
|
56 |
+
| 1.1551 | 3.0 | 339 | 0.9743 | 0.74 |
|
57 |
+
| 0.7756 | 4.0 | 452 | 0.7805 | 0.81 |
|
58 |
+
| 0.4436 | 5.0 | 565 | 0.6117 | 0.81 |
|
59 |
+
| 0.3047 | 6.0 | 678 | 0.7366 | 0.79 |
|
60 |
+
| 0.2288 | 7.0 | 791 | 0.5297 | 0.86 |
|
61 |
+
| 0.2728 | 8.0 | 904 | 0.5677 | 0.87 |
|
62 |
+
| 0.1072 | 9.0 | 1017 | 0.6887 | 0.86 |
|
63 |
+
| 0.137 | 10.0 | 1130 | 0.9238 | 0.8 |
|
64 |
+
| 0.021 | 11.0 | 1243 | 0.7738 | 0.84 |
|
65 |
+
| 0.007 | 12.0 | 1356 | 0.7002 | 0.86 |
|
66 |
+
| 0.0047 | 13.0 | 1469 | 0.7805 | 0.86 |
|
67 |
+
| 0.0039 | 14.0 | 1582 | 0.7624 | 0.85 |
|
68 |
+
| 0.0034 | 15.0 | 1695 | 0.7892 | 0.85 |
|
69 |
+
| 0.0031 | 16.0 | 1808 | 0.7806 | 0.85 |
|
70 |
+
| 0.0029 | 17.0 | 1921 | 0.8005 | 0.85 |
|
71 |
+
| 0.0028 | 18.0 | 2034 | 0.7942 | 0.85 |
|
72 |
+
| 0.0025 | 19.0 | 2147 | 0.8138 | 0.86 |
|
73 |
+
| 0.0025 | 20.0 | 2260 | 0.8042 | 0.86 |
|
74 |
|
75 |
|
76 |
### Framework versions
|
77 |
|
78 |
- Transformers 4.30.2
|
79 |
+
- Pytorch 2.0.1
|
80 |
- Datasets 2.13.1
|
81 |
- Tokenizers 0.13.3
|