File size: 26,225 Bytes
955beff
 
 
 
 
 
 
 
 
 
b022487
 
 
 
 
 
 
955beff
b022487
 
955beff
 
 
 
b022487
 
 
 
 
 
955beff
b022487
955beff
 
 
 
b022487
 
 
 
 
 
 
955beff
b022487
955beff
 
 
 
b022487
 
 
 
 
 
 
955beff
b022487
955beff
 
 
 
b022487
 
 
 
 
 
955beff
b022487
955beff
b022487
 
 
955beff
 
 
 
651b2b2
b022487
 
 
 
955beff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f996560
 
 
 
 
 
 
 
 
 
 
955beff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deff0ca
 
 
 
 
955beff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:784827
- loss:ContrastiveLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: >-
    Background: The study addresses the need for effective tools that allow both
    novice and expert users to analyze the diversity of news coverage about
    events. It highlights the importance of tailoring the interface to
    accommodate non-expert users while also considering the insights of
    journalism-savvy users, indicating a gap in existing systems that cater to
    varying levels of expertise in news analysis.

    Contribution: Combine 'a coordinated visualization interface tailored for
    visualization non-expert users' and 
  sentences:
  - a method considering lexical relationships
  - cross-modality self-supervised learning via masked visual language modeling
  - cognitive models of chaining
- source_sentence: >-
    Background: Existing methods for anomaly detection on dynamic graphs
    struggle with capturing complex time information in graph structures and
    generating effective negative samples for unsupervised learning. These
    challenges highlight the need for improved methodologies that can address
    the limitations of current approaches in this field.

    Contribution: Combine 'a message-passing framework' and 
  sentences:
  - the grouping task
  - a forecaster
  - the optimisation algorithm producing the learnable model
- source_sentence: >-
    Background: The accuracy of pixel flows is crucial for achieving
    high-quality video enhancement, yet most prior works focus on estimating
    dense flows that are generally less robust and computationally expensive.
    This highlights a gap in existing methodologies that fail to prioritize
    accuracy over density, necessitating a more efficient approach to flow
    estimation for video enhancement tasks.

    Contribution: Combine 'sparse point cloud data' and 
  sentences:
  - a deep CNN
  - a reinforcement learning view of the dialog generation task
  - graphical models
- source_sentence: >-
    Background: The optimal robot assembly planning problem is challenging due
    to the necessity of finding the optimal solution amongst an exponentially
    vast number of possible plans while satisfying a selection of constraints.
    Traditional heuristic methods are limited as they are specific to a given
    objective structure or set of problem parameters, indicating a need for more
    versatile and effective approaches.

    Contribution: 'pos[e] assembly sequencing' inspired by 
  sentences:
  - 3D geometric neural field representation
  - prompt learning
  - gestures
- source_sentence: >-
    Background: Patients find it difficult to use dexterous prosthetic hands
    without a suitable control system, highlighting a need for improved grasp
    performance and ease of operation. Existing methods may not adequately
    address the challenges faced by users, particularly those with inferior
    myoelectric signals, in effectively controlling prosthetic devices.

    Contribution: Combine 'myoelectric signal' and 
  sentences:
  - >-
    a unified framework for collaborative decoding between large and small
    language models (Large Language Models and small language models)
  - image understanding
  - joint biomedical entity linking and event extraction
pipeline_tag: sentence-similarity
library_name: sentence-transformers
license: cc
datasets:
- noystl/Recombination-Pred
language:
- en
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    "Background: Patients find it difficult to use dexterous prosthetic hands without a suitable control system, highlighting a need for improved grasp performance and ease of operation. Existing methods may not adequately address the challenges faced by users, particularly those with inferior myoelectric signals, in effectively controlling prosthetic devices.\nContribution: Combine 'myoelectric signal' and ",
    'a unified framework for collaborative decoding between large and small language models (Large Language Models and small language models)',
    'joint biomedical entity linking and event extraction',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 784,827 training samples
* Columns: <code>query</code>, <code>answer</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                              | answer                                                                           | label                                          |
  |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------------------|
  | type    | string                                                                             | string                                                                           | int                                            |
  | details | <ul><li>min: 60 tokens</li><li>mean: 77.86 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.82 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>0: ~96.70%</li><li>1: ~3.30%</li></ul> |
* Samples:
  | query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | answer                                                        | label          |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------|
  | <code>Background: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks.<br>Contribution: Combine 'a Hidden Markov Model' and </code> | <code>a multilayer perceptron</code>                          | <code>1</code> |
  | <code>Background: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks.<br>Contribution: Combine 'a Hidden Markov Model' and </code> | <code>synthetic occlusion augmentation during training</code> | <code>0</code> |
  | <code>Background: The study addresses the challenge of action segmentation under weak supervision, where the available ground truth only indicates the presence of actions without providing their temporal ordering or occurrence timing in training videos. This limitation necessitates the development of a method to generate pseudo-ground truth for effective training and improve performance in action segmentation and alignment tasks.<br>Contribution: Combine 'a Hidden Markov Model' and </code> | <code>robustness of deep learning methods</code>              | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 64
- `learning_rate`: 1.9218937402834593e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.08278167292320517
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1.9218937402834593e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.08278167292320517
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0082 | 100   | 0.0104        |
| 0.0163 | 200   | 0.0068        |
| 0.0245 | 300   | 0.005         |
| 0.0326 | 400   | 0.0041        |
| 0.0408 | 500   | 0.0054        |
| 0.0489 | 600   | 0.004         |
| 0.0571 | 700   | 0.0037        |
| 0.0652 | 800   | 0.0037        |
| 0.0734 | 900   | 0.0049        |
| 0.0815 | 1000  | 0.0038        |
| 0.0897 | 1100  | 0.004         |
| 0.0979 | 1200  | 0.0037        |
| 0.1060 | 1300  | 0.004         |
| 0.1142 | 1400  | 0.0049        |
| 0.1223 | 1500  | 0.0038        |
| 0.1305 | 1600  | 0.0036        |
| 0.1386 | 1700  | 0.0037        |
| 0.1468 | 1800  | 0.0045        |
| 0.1549 | 1900  | 0.0038        |
| 0.1631 | 2000  | 0.0034        |
| 0.1712 | 2100  | 0.0034        |
| 0.1794 | 2200  | 0.0035        |
| 0.1876 | 2300  | 0.0045        |
| 0.1957 | 2400  | 0.0036        |
| 0.2039 | 2500  | 0.0036        |
| 0.2120 | 2600  | 0.0033        |
| 0.2202 | 2700  | 0.004         |
| 0.2283 | 2800  | 0.0036        |
| 0.2365 | 2900  | 0.0033        |
| 0.2446 | 3000  | 0.0033        |
| 0.2528 | 3100  | 0.0037        |
| 0.2609 | 3200  | 0.0038        |
| 0.2691 | 3300  | 0.0033        |
| 0.2773 | 3400  | 0.0034        |
| 0.2854 | 3500  | 0.0033        |
| 0.2936 | 3600  | 0.0041        |
| 0.3017 | 3700  | 0.0033        |
| 0.3099 | 3800  | 0.0033        |
| 0.3180 | 3900  | 0.0032        |
| 0.3262 | 4000  | 0.004         |
| 0.3343 | 4100  | 0.0035        |
| 0.3425 | 4200  | 0.0031        |
| 0.3506 | 4300  | 0.0033        |
| 0.3588 | 4400  | 0.0033        |
| 0.3670 | 4500  | 0.0039        |
| 0.3751 | 4600  | 0.0032        |
| 0.3833 | 4700  | 0.0034        |
| 0.3914 | 4800  | 0.0031        |
| 0.3996 | 4900  | 0.004         |
| 0.4077 | 5000  | 0.0032        |
| 0.4159 | 5100  | 0.0031        |
| 0.4240 | 5200  | 0.0031        |
| 0.4322 | 5300  | 0.0032        |
| 0.4403 | 5400  | 0.0039        |
| 0.4485 | 5500  | 0.0031        |
| 0.4567 | 5600  | 0.003         |
| 0.4648 | 5700  | 0.0032        |
| 0.4730 | 5800  | 0.0038        |
| 0.4811 | 5900  | 0.0033        |
| 0.4893 | 6000  | 0.0031        |
| 0.4974 | 6100  | 0.0032        |
| 0.5056 | 6200  | 0.0033        |
| 0.5137 | 6300  | 0.0033        |
| 0.5219 | 6400  | 0.0032        |
| 0.5300 | 6500  | 0.0031        |
| 0.5382 | 6600  | 0.0032        |
| 0.5464 | 6700  | 0.0038        |
| 0.5545 | 6800  | 0.003         |
| 0.5627 | 6900  | 0.003         |
| 0.5708 | 7000  | 0.0029        |
| 0.5790 | 7100  | 0.0038        |
| 0.5871 | 7200  | 0.0032        |
| 0.5953 | 7300  | 0.0031        |
| 0.6034 | 7400  | 0.003         |
| 0.6116 | 7500  | 0.003         |
| 0.6198 | 7600  | 0.0039        |
| 0.6279 | 7700  | 0.0031        |
| 0.6361 | 7800  | 0.0031        |
| 0.6442 | 7900  | 0.0031        |
| 0.6524 | 8000  | 0.0039        |
| 0.6605 | 8100  | 0.003         |
| 0.6687 | 8200  | 0.003         |
| 0.6768 | 8300  | 0.003         |
| 0.6850 | 8400  | 0.0028        |
| 0.6931 | 8500  | 0.0035        |
| 0.7013 | 8600  | 0.0031        |
| 0.7095 | 8700  | 0.003         |
| 0.7176 | 8800  | 0.0026        |
| 0.7258 | 8900  | 0.0034        |
| 0.7339 | 9000  | 0.0033        |
| 0.7421 | 9100  | 0.003         |
| 0.7502 | 9200  | 0.0027        |
| 0.7584 | 9300  | 0.0029        |
| 0.7665 | 9400  | 0.0034        |
| 0.7747 | 9500  | 0.0029        |
| 0.7828 | 9600  | 0.0028        |
| 0.7910 | 9700  | 0.0027        |
| 0.7992 | 9800  | 0.0033        |
| 0.8073 | 9900  | 0.0031        |
| 0.8155 | 10000 | 0.0029        |
| 0.8236 | 10100 | 0.0028        |
| 0.8318 | 10200 | 0.0031        |
| 0.8399 | 10300 | 0.0031        |
| 0.8481 | 10400 | 0.003         |
| 0.8562 | 10500 | 0.0029        |
| 0.8644 | 10600 | 0.0028        |
| 0.8725 | 10700 | 0.0033        |
| 0.8807 | 10800 | 0.003         |
| 0.8889 | 10900 | 0.0029        |
| 0.8970 | 11000 | 0.0027        |
| 0.9052 | 11100 | 0.0033        |
| 0.9133 | 11200 | 0.0029        |
| 0.9215 | 11300 | 0.0029        |
| 0.9296 | 11400 | 0.0029        |
| 0.9378 | 11500 | 0.003         |
| 0.9459 | 11600 | 0.0034        |
| 0.9541 | 11700 | 0.0031        |
| 0.9622 | 11800 | 0.0027        |
| 0.9704 | 11900 | 0.0029        |
| 0.9786 | 12000 | 0.0034        |
| 0.9867 | 12100 | 0.0032        |
| 0.9949 | 12200 | 0.003         |
| 1.0030 | 12300 | 0.0032        |
| 1.0112 | 12400 | 0.0028        |
| 1.0193 | 12500 | 0.003         |
| 1.0275 | 12600 | 0.0027        |
| 1.0356 | 12700 | 0.0034        |
| 1.0438 | 12800 | 0.0029        |
| 1.0519 | 12900 | 0.0025        |
| 1.0601 | 13000 | 0.0028        |
| 1.0683 | 13100 | 0.0026        |
| 1.0764 | 13200 | 0.0035        |
| 1.0846 | 13300 | 0.0026        |
| 1.0927 | 13400 | 0.0028        |
| 1.1009 | 13500 | 0.0026        |
| 1.1090 | 13600 | 0.0034        |
| 1.1172 | 13700 | 0.0028        |
| 1.1253 | 13800 | 0.0027        |
| 1.1335 | 13900 | 0.0026        |
| 1.1416 | 14000 | 0.0031        |
| 1.1498 | 14100 | 0.0025        |
| 1.1580 | 14200 | 0.0025        |
| 1.1661 | 14300 | 0.0025        |
| 1.1743 | 14400 | 0.0024        |
| 1.1824 | 14500 | 0.0031        |
| 1.1906 | 14600 | 0.0025        |
| 1.1987 | 14700 | 0.0024        |
| 1.2069 | 14800 | 0.0025        |
| 1.2150 | 14900 | 0.0029        |
| 1.2232 | 15000 | 0.0025        |
| 1.2313 | 15100 | 0.0025        |
| 1.2395 | 15200 | 0.0023        |
| 1.2477 | 15300 | 0.0024        |
| 1.2558 | 15400 | 0.0029        |
| 1.2640 | 15500 | 0.0023        |
| 1.2721 | 15600 | 0.0023        |
| 1.2803 | 15700 | 0.0023        |
| 1.2884 | 15800 | 0.0032        |
| 1.2966 | 15900 | 0.0023        |
| 1.3047 | 16000 | 0.0023        |
| 1.3129 | 16100 | 0.0024        |
| 1.3210 | 16200 | 0.0025        |
| 1.3292 | 16300 | 0.0028        |
| 1.3374 | 16400 | 0.0023        |
| 1.3455 | 16500 | 0.0021        |
| 1.3537 | 16600 | 0.0023        |
| 1.3618 | 16700 | 0.0029        |
| 1.3700 | 16800 | 0.0023        |
| 1.3781 | 16900 | 0.0023        |
| 1.3863 | 17000 | 0.0025        |
| 1.3944 | 17100 | 0.0028        |
| 1.4026 | 17200 | 0.0023        |
| 1.4107 | 17300 | 0.0023        |
| 1.4189 | 17400 | 0.0023        |
| 1.4271 | 17500 | 0.0023        |
| 1.4352 | 17600 | 0.0029        |
| 1.4434 | 17700 | 0.0022        |
| 1.4515 | 17800 | 0.0022        |
| 1.4597 | 17900 | 0.0023        |
| 1.4678 | 18000 | 0.0026        |
| 1.4760 | 18100 | 0.0024        |
| 1.4841 | 18200 | 0.0023        |
| 1.4923 | 18300 | 0.0024        |
| 1.5004 | 18400 | 0.0024        |
| 1.5086 | 18500 | 0.0026        |
| 1.5168 | 18600 | 0.0022        |
| 1.5249 | 18700 | 0.0023        |
| 1.5331 | 18800 | 0.0023        |
| 1.5412 | 18900 | 0.003         |
| 1.5494 | 19000 | 0.002         |
| 1.5575 | 19100 | 0.0022        |
| 1.5657 | 19200 | 0.0023        |
| 1.5738 | 19300 | 0.0023        |
| 1.5820 | 19400 | 0.0028        |
| 1.5901 | 19500 | 0.0022        |
| 1.5983 | 19600 | 0.0023        |
| 1.6065 | 19700 | 0.0022        |
| 1.6146 | 19800 | 0.0028        |
| 1.6228 | 19900 | 0.0022        |
| 1.6309 | 20000 | 0.0023        |
| 1.6391 | 20100 | 0.0025        |
| 1.6472 | 20200 | 0.0028        |
| 1.6554 | 20300 | 0.0023        |
| 1.6635 | 20400 | 0.0021        |
| 1.6717 | 20500 | 0.0022        |
| 1.6798 | 20600 | 0.0022        |
| 1.6880 | 20700 | 0.0025        |
| 1.6962 | 20800 | 0.0024        |
| 1.7043 | 20900 | 0.0023        |
| 1.7125 | 21000 | 0.0021        |
| 1.7206 | 21100 | 0.0024        |
| 1.7288 | 21200 | 0.0024        |
| 1.7369 | 21300 | 0.0023        |
| 1.7451 | 21400 | 0.0022        |
| 1.7532 | 21500 | 0.0021        |
| 1.7614 | 21600 | 0.0025        |
| 1.7696 | 21700 | 0.0023        |
| 1.7777 | 21800 | 0.002         |
| 1.7859 | 21900 | 0.0022        |
| 1.7940 | 22000 | 0.0025        |
| 1.8022 | 22100 | 0.0022        |
| 1.8103 | 22200 | 0.0023        |
| 1.8185 | 22300 | 0.0022        |
| 1.8266 | 22400 | 0.0021        |
| 1.8348 | 22500 | 0.0025        |
| 1.8429 | 22600 | 0.0025        |
| 1.8511 | 22700 | 0.0022        |
| 1.8593 | 22800 | 0.0023        |
| 1.8674 | 22900 | 0.0026        |
| 1.8756 | 23000 | 0.0022        |
| 1.8837 | 23100 | 0.0022        |
| 1.8919 | 23200 | 0.0022        |
| 1.9000 | 23300 | 0.0024        |
| 1.9082 | 23400 | 0.0022        |
| 1.9163 | 23500 | 0.0022        |
| 1.9245 | 23600 | 0.0023        |
| 1.9326 | 23700 | 0.0023        |
| 1.9408 | 23800 | 0.0027        |
| 1.9490 | 23900 | 0.0023        |
| 1.9571 | 24000 | 0.0023        |
| 1.9653 | 24100 | 0.0022        |
| 1.9734 | 24200 | 0.0027        |
| 1.9816 | 24300 | 0.0025        |
| 1.9897 | 24400 | 0.0023        |
| 1.9979 | 24500 | 0.0025        |

</details>

### Framework Versions
- Python: 3.11.2
- Sentence Transformers: 3.3.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.0.1
- Datasets: 3.1.0
- Tokenizers: 0.21.0

## Citation

### BibTeX
```bibtex
@misc{sternlicht2025chimeraknowledgebaseidea,
      title={CHIMERA: A Knowledge Base of Idea Recombination in Scientific Literature}, 
      author={Noy Sternlicht and Tom Hope},
      year={2025},
      eprint={2505.20779},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.20779}, 
}
```

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
```

**Quick Links**
- ๐ŸŒ [Project](https://noy-sternlicht.github.io/CHIMERA-Web)
- ๐Ÿ“ƒ [Paper](https://arxiv.org/abs/2505.20779)
- ๐Ÿ› ๏ธ [Code](https://github.com/noy-sternlicht/CHIMERA-KB)

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->