noeminaepli
commited on
Commit
•
8cdb23a
1
Parent(s):
0cd9bc2
Update README.md
Browse files
README.md
CHANGED
@@ -1,19 +1,35 @@
|
|
1 |
---
|
|
|
|
|
2 |
---
|
3 |
|
4 |
-
#
|
5 |
|
6 |
-
The
|
|
|
7 |
|
8 |
### Training procedure and data sets
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
Accuracy on NOAH test split: 0.
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
### Training hyperparameters
|
|
|
1 |
---
|
2 |
+
language: gsw
|
3 |
+
license: cc
|
4 |
---
|
5 |
|
6 |
+
# Swiss German STTS Part-of-Speech Tagging Model
|
7 |
|
8 |
+
The **swiss_german_pos_model** is a part-of-speech tagging model for Swiss German. The model is trained on [STTS POS Tags](https://universaldependencies.org/tagset-conversion/de-stts-uposf.html).
|
9 |
+
Note that there is also a model trained on [Universal POS tags (upos)](https://universaldependencies.org/u/pos/): [swiss_german_pos_model](https://huggingface.co/noeminaepli/swiss_german_pos_model).
|
10 |
|
11 |
### Training procedure and data sets
|
12 |
|
13 |
+
1) Base model: German LM: [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased)
|
14 |
+
2) Continued LM training with [swisscrawl data](https://icosys.ch/swisscrawl)
|
15 |
+
3) Task fine-tuning on the [UD\_German-HDT](https://github.com/UniversalDependencies/UD_German-HDT/tree/master) data set with [character-level noise](https://aclanthology.org/2022.findings-acl.321/)
|
16 |
+
4) Task fine-tuning on the Swiss German [NOAH-Corpus](https://noe-eva.github.io/NOAH-Corpus/) (train + dev split)
|
17 |
|
18 |
+
- Accuracy on Swiss German NOAH test split: 0.9432
|
19 |
+
- Accuracy on German UD_German-HDT test set after GSW fine-tuning: 0.9826 (vs 0.9828 at step 3 before GSW fine-tuning)
|
20 |
|
21 |
+
### Usage
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
25 |
+
|
26 |
+
model = AutoModelForTokenClassification.from_pretrained("noeminaepli/swiss_german_stts_pos_model")
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("noeminaepli/swiss_german_stts_pos_model")
|
28 |
+
|
29 |
+
pos_tagger = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
30 |
+
tokens = pos_tagger("Worum söu mes ned chönne?")
|
31 |
+
|
32 |
+
```
|
33 |
|
34 |
|
35 |
### Training hyperparameters
|