---
tags:
- fp4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: mit
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
---
# DeepSeek-R1-Distill-Qwen-32B-NVFP4
## Model Overview
- **Model Architecture:** DeepSeek-R1-Distill-Qwen-32B
- **Input:** Text / Image
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP4
- **Activation quantization:** FP4
- **Release Date:** 7/30/25
- **Version:** 1.0
- **Model Developers:** RedHatAI
This model is a quantized version of [DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) to FP4 data type, ready for inference with vLLM>=0.9.1
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
Only the weights of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
Model Usage Code
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/DeepSeek-R1-Distill-Qwen-32B-NVFP4"
number_gpus = 2
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
Model Creation Code
```python
```
Category | Metric | DeepSeek-R1-Distill-Qwen-32B | DeepSeek-R1-Distill-Qwen-32B-NVFP4 | Recovery (%) |
---|---|---|---|---|
OpenLLM V1 | ARC Challenge | 67.66 | 64.25 | 94.94% |
GSM8K | 83.02 | 84.84 | 102.19% | |
Hellaswag | 83.79 | 83.28 | 99.39% | |
MMLU | 81.25 | 80.79 | 99.43% | |
TruthfulQA-mc2 | 58.37 | 57.50 | 98.51% | |
Winogrande | 75.77 | 76.40 | 100.83% | |
Average | 74.98 | 74.51 | 99.38% | |
OpenLLM V2 | MMLU-Pro | % | ||
IFEval | % | |||
BBH | % | |||
Math-Hard | % | |||
GPQA | % | |||
MuSR | % | |||
Average | % | |||
Reasoning | Math 500 | 95.09 | 95.60 | 100.54% |
GPQA (diamond) | 64.05 | 61.11 | 95.41% | |
AIME25 | 69.75 (AIME24) | 53.33 | 76.45% | |
LCB: Code Generation | – | 54.29 | – | |
Coding | HumanEval Instruct pass@1 | – | – | – |
HumanEval 64 Instruct pass@2 | – | – | – | |
HumanEval 64 Instruct pass@8 | – | – | – | |
HumanEval 64 Instruct pass@16 | – | – | – | |
HumanEval 64 Instruct pass@32 | – | – | – | |
HumanEval 64 Instruct pass@64 | – | – | – |