Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ja
|
4 |
+
library_name: transformers
|
5 |
+
widget:
|
6 |
+
- text: X が 部屋 で ゲームするxNeed 1 分 前 、
|
7 |
+
---
|
8 |
+
|
9 |
+
# TaCOMET_ja
|
10 |
+
|
11 |
+
This is the Japanese TaCOMET model, which is the finetuned COMET model on the Japanese ver. of [TimeATOMIC](https://github.com/nlp-waseda/TaCOMET) using causal language modeling (CLM) objective.
|
12 |
+
The data and this model are introduced in [this paper](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/P3-19.pdf).
|
13 |
+
|
14 |
+
### Preprocessing
|
15 |
+
|
16 |
+
The texts are segmented into words using Juman++ and tokenized using SentencePiece.
|
17 |
+
|
18 |
+
### BibTeX entry and citation info
|
19 |
+
|
20 |
+
```bibtex
|
21 |
+
@InProceedings{murata_nlp2023_tacomet,
|
22 |
+
author = "村田栄樹 and 河原大輔",
|
23 |
+
title = "TaCOMET: 時間を考慮したイベント常識生成モデル",
|
24 |
+
booktitle = "言語処理学会第30回年次大会",
|
25 |
+
year = "2024",
|
26 |
+
url = "https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/P3-19.pdf"
|
27 |
+
note = "in Japanese"
|
28 |
+
}
|
29 |
+
```
|