R-best-fine-tuned-bart-base-full-ft-reward_short_sentences_and_words-2023-07-13T06-49-08
/
training_parameter.json
{ | |
"ppo_config": { | |
"model_name": "R-best-fine-tuned-bart-base-full-ft-reward_short_sentences_and_words-2023-07-13T06-49-08", | |
"steps": 20000, | |
"note": "Stopped manually after 65 steps", | |
"learning_rate": 1e-06, | |
"target": 6, | |
"batch_size": 64, | |
"mini_batch_size": 1, | |
"ppo_epochs": 4, | |
"gradient_accumulation_steps": 1, | |
"log_with": "tensorboard", | |
"accelerator_kwargs": { | |
"logging_dir": "/content/results/R-best-fine-tuned-bart-base-full-ft-reward_short_sentences_and_words-2023-07-13T06-49-08/runs" | |
}, | |
"early_stopping": false, | |
"push_to_hub_if_best_kwargs": { | |
"repo_id": "nlp-lab-2023-seq2seq/R-best-fine-tuned-bart-base-full-ft-reward_short_sentences_and_words-2023-07-13T06-49-08", | |
"private": true, | |
"commit_message": "add: new best model" | |
}, | |
"compare_steps": 100 | |
}, | |
"generation_kwargs": { | |
"max_new_tokens": 414, | |
"num_beams": 1, | |
"early_stopping": true, | |
"pad_token_id": 1, | |
"eos_token_id": 2 | |
}, | |
"translation_model": "nlp-lab-2023-seq2seq/R-facebook-bart-base-full-ft-without-tum-nlp-german-gpt2_easy-prior-pp-bb5c579f", | |
"reward_fn": "reward_bleu_short_sentences_and_words", | |
"finetuning_strategy": "full" | |
} |