nirajandhakal commited on
Commit
3d63c38
·
verified ·
1 Parent(s): 5b6c844

Create evaluation_script.py

Browse files
Files changed (1) hide show
  1. evaluation_script.py +196 -0
evaluation_script.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import chess
2
+ import chess.engine
3
+ import numpy as np
4
+ import tensorflow as tf
5
+ import time
6
+ import os
7
+ import datetime
8
+ import shutil # For zip creation
9
+ from google.colab import files # For download trigger
10
+
11
+ # --- 1. Neural Network (Policy and Value Network) ---
12
+ class PolicyValueNetwork(tf.keras.Model):
13
+ def __init__(self, num_moves):
14
+ super(PolicyValueNetwork, self).__init__()
15
+ self.conv1 = tf.keras.layers.Conv2D(32, 3, activation='relu', padding='same')
16
+ self.flatten = tf.keras.layers.Flatten()
17
+ self.dense_policy = tf.keras.layers.Dense(num_moves, activation='softmax', name='policy_head')
18
+ self.dense_value = tf.keras.layers.Dense(1, activation='tanh', name='value_head')
19
+
20
+ def call(self, inputs):
21
+ x = self.conv1(inputs)
22
+ x = self.flatten(x)
23
+ policy = self.dense_policy(x)
24
+ value = self.dense_value(x)
25
+ return policy, value
26
+
27
+ # --- 2. Move Encoding/Decoding (Correct and Deterministic Implementation) ---
28
+ NUM_POSSIBLE_MOVES = 4672 # Correct value based on deterministic encoding
29
+ NUM_INPUT_PLANES = 12
30
+
31
+ # Load model weights
32
+ policy_value_net = PolicyValueNetwork(NUM_POSSIBLE_MOVES)
33
+
34
+ # dummy input for building network
35
+ dummy_input = tf.random.normal((1, 8, 8, NUM_INPUT_PLANES))
36
+ policy, value = policy_value_net(dummy_input)
37
+
38
+
39
+ # Load the weights (replace 'your_model.weights.h5' with your actual file)
40
+ try:
41
+ model_path = "/stockzero/models_weights/StockZero-2025-03-24-1727.weights.h5"
42
+ policy_value_net.load_weights(model_path)
43
+ print(f"Model weights loaded successfully from '{model_path}'")
44
+ except Exception as e:
45
+ print(f"Error loading weights: {e}")
46
+
47
+ # --- Create output directory and set output paths ---
48
+ OUTPUT_DIR = "/content/converted_models"
49
+ os.makedirs(OUTPUT_DIR, exist_ok=True) # Create the folder if it does not exist
50
+
51
+ SAVED_MODEL_DIR = os.path.join(OUTPUT_DIR, "saved_model")
52
+ KERAS_MODEL_PATH = os.path.join(OUTPUT_DIR, "model.keras")
53
+ H5_MODEL_PATH = os.path.join(OUTPUT_DIR, "model_weights.h5")
54
+ PYTORCH_MODEL_PATH = os.path.join(OUTPUT_DIR, "pytorch_model.pth")
55
+ PYTORCH_FULL_MODEL_PATH = os.path.join(OUTPUT_DIR, "pytorch_full_model.pth")
56
+ ONNX_MODEL_PATH = os.path.join(OUTPUT_DIR, "model.onnx")
57
+ TFLITE_MODEL_PATH = os.path.join(OUTPUT_DIR, "model.tflite")
58
+ BIN_FILE_PATH = os.path.join(OUTPUT_DIR, "model_weights.bin")
59
+ NUMPY_FILE_PATH = os.path.join(OUTPUT_DIR, "model_weights.npz")
60
+
61
+
62
+ # --- 1. Keras/TensorFlow (SavedModel format) ---
63
+ try:
64
+ tf.saved_model.save(policy_value_net, SAVED_MODEL_DIR)
65
+ print(f"Model saved as SavedModel to '{SAVED_MODEL_DIR}'")
66
+ except Exception as e:
67
+ print(f"Error saving model as SavedModel: {e}")
68
+
69
+ # --- 2. Keras .keras Format (Weights + Architecture) ---
70
+ try:
71
+ policy_value_net.save(KERAS_MODEL_PATH)
72
+ print(f"Model saved as Keras .keras format to '{KERAS_MODEL_PATH}'")
73
+ except Exception as e:
74
+ print(f"Error saving as .keras format: {e}")
75
+ # --- 3. Keras/TensorFlow (.h5 - Weights) ---
76
+ try:
77
+ policy_value_net.save_weights(H5_MODEL_PATH)
78
+ print(f"Model weights saved as .h5 to '{H5_MODEL_PATH}'")
79
+ except Exception as e:
80
+ print(f"Error saving model weights as .h5: {e}")
81
+
82
+
83
+ # --- 4. PyTorch ---
84
+ import torch
85
+ import torch.nn as nn
86
+
87
+ class PyTorchPolicyValueNetwork(nn.Module):
88
+ def __init__(self, num_moves):
89
+ super(PyTorchPolicyValueNetwork, self).__init__()
90
+ self.conv1 = nn.Conv2d(12, 32, kernel_size=3, padding=1) # Input 12 channels for chess
91
+ self.relu = nn.ReLU()
92
+ self.flatten = nn.Flatten()
93
+ self.dense_policy = nn.Linear(8*8*32, num_moves) # Calculate size using the parameters from keras layer, after flatten output is 8*8*32
94
+ self.softmax = nn.Softmax(dim=1)
95
+ self.dense_value = nn.Linear(8*8*32, 1)
96
+ self.tanh = nn.Tanh()
97
+
98
+ def forward(self, x):
99
+ x = self.relu(self.conv1(x))
100
+ x = self.flatten(x)
101
+ policy = self.softmax(self.dense_policy(x))
102
+ value = self.tanh(self.dense_value(x))
103
+ return policy, value
104
+
105
+ try:
106
+ pytorch_model = PyTorchPolicyValueNetwork(NUM_POSSIBLE_MOVES)
107
+
108
+ # Get Keras layers
109
+ keras_conv1 = policy_value_net.conv1
110
+ keras_dense_policy = policy_value_net.dense_policy
111
+ keras_dense_value = policy_value_net.dense_value
112
+
113
+ # Transfer weights from Keras to PyTorch
114
+ pytorch_model.conv1.weight = torch.nn.Parameter(torch.tensor(keras_conv1.kernel.numpy().transpose(3,2,0,1), dtype=torch.float32))
115
+ pytorch_model.conv1.bias = torch.nn.Parameter(torch.tensor(keras_conv1.bias.numpy(), dtype=torch.float32))
116
+
117
+ pytorch_model.dense_policy.weight = torch.nn.Parameter(torch.tensor(keras_dense_policy.kernel.numpy().transpose(), dtype=torch.float32))
118
+ pytorch_model.dense_policy.bias = torch.nn.Parameter(torch.tensor(keras_dense_policy.bias.numpy(), dtype=torch.float32))
119
+
120
+ pytorch_model.dense_value.weight = torch.nn.Parameter(torch.tensor(keras_dense_value.kernel.numpy().transpose(), dtype=torch.float32))
121
+ pytorch_model.dense_value.bias = torch.nn.Parameter(torch.tensor(keras_dense_value.bias.numpy(), dtype=torch.float32))
122
+
123
+ torch.save(pytorch_model.state_dict(), PYTORCH_MODEL_PATH)
124
+ print(f"PyTorch model weights saved to '{PYTORCH_MODEL_PATH}'")
125
+
126
+ torch.save(pytorch_model, PYTORCH_FULL_MODEL_PATH) # Save full model
127
+ print(f"PyTorch model saved as '{PYTORCH_FULL_MODEL_PATH}'")
128
+ except Exception as e:
129
+ print(f"Error during PyTorch conversion: {e}")
130
+
131
+
132
+ # --- 5. ONNX ---
133
+ import tf2onnx
134
+ try:
135
+ spec = (tf.TensorSpec((None, 8, 8, 12), tf.float32, name="input"),)
136
+ onnx_model, _ = tf2onnx.convert.from_keras(policy_value_net, input_signature=spec)
137
+
138
+ with open(ONNX_MODEL_PATH, "wb") as f:
139
+ f.write(onnx_model.SerializeToString())
140
+ print(f"Model saved as ONNX to '{ONNX_MODEL_PATH}'")
141
+ except Exception as e:
142
+ print(f"Error saving model as ONNX: {e}")
143
+
144
+ # --- 6. TensorFlow Lite ---
145
+ try:
146
+ converter = tf.lite.TFLiteConverter.from_keras_model(policy_value_net)
147
+ tflite_model = converter.convert()
148
+
149
+ with open(TFLITE_MODEL_PATH, 'wb') as f:
150
+ f.write(tflite_model)
151
+ print(f"Model saved as TFLite to '{TFLITE_MODEL_PATH}'")
152
+ except Exception as e:
153
+ print(f"Error converting to TFLite: {e}")
154
+
155
+
156
+ # --- 7. Binary (.bin) format (Custom Implementation) ---
157
+ try:
158
+ with open(BIN_FILE_PATH, 'wb') as f:
159
+ for layer in policy_value_net.layers:
160
+ for weight in layer.weights:
161
+ weight_arr = weight.numpy()
162
+ f.write(weight_arr.tobytes())
163
+ print(f"Model weights saved as .bin to '{BIN_FILE_PATH}'")
164
+ except Exception as e:
165
+ print(f"Error saving model weights as .bin: {e}")
166
+
167
+ # --- 8. NumPy arrays (.npz) format ---
168
+ try:
169
+ all_weights = {}
170
+ for layer in policy_value_net.layers:
171
+ for i, weight in enumerate(layer.weights):
172
+ all_weights[f"{layer.name}_weight_{i}"] = weight.numpy()
173
+ np.savez(NUMPY_FILE_PATH, **all_weights)
174
+ print(f"Model weights saved as NumPy arrays to '{NUMPY_FILE_PATH}'")
175
+ except Exception as e:
176
+ print(f"Error saving model weights as NumPy: {e}")
177
+
178
+
179
+ # --- 9. TensorFlow.js (requires command line tool)---
180
+ # --- This would require the TensorFlow.js converter tool ---
181
+ # --- Command-Line example shown below (run in shell, not in the script) ---
182
+ # --- tensorflowjs_converter --input_format=tf_saved_model ./saved_model ./tfjs_model ---
183
+ print("To convert to TensorFlow.js format, run the 'tensorflowjs_converter' command-line tool (see comments in script).")
184
+
185
+
186
+ # --- Zip all files and create download ---
187
+ try:
188
+ current_datetime = datetime.datetime.now()
189
+ zip_file_name = f"converted_models-{current_datetime.strftime('%Y%m%d%H%M')}"
190
+ zip_file_path = f"/directory/{zip_file_name}"
191
+ shutil.make_archive(zip_file_path, 'zip', OUTPUT_DIR) # Create zip archive
192
+ print(f"All converted model files zipped to '{zip_file_path}.zip'")
193
+ files.download(f"{zip_file_path}.zip") # Trigger download in Colab
194
+ print("Download should start in a moment.")
195
+ except Exception as e:
196
+ print(f"Error zipping and creating download: {e}")