from functools import partial import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from mmcv.cnn.bricks import DropPath from mmengine import to_2tuple from mmaction.registry import MODELS class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the original BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat( (self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q = q * self.scale attn = (q @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim) self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values > 0: self.gamma_1 = nn.Parameter( init_values * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter( init_values * torch.ones((dim)), requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.tubelet_size = int(tubelet_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * ( num_frames // self.tubelet_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv3d( in_channels=in_chans, out_channels=embed_dim, kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), stride=(self.tubelet_size, patch_size[0], patch_size[1])) def forward(self, x): B, C, T, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model " \ f'({self.img_size[0]}*{self.img_size[1]}).' x = self.proj(x).flatten(2).transpose(1, 2) return x # sin-cos position encoding def get_sinusoid_encoding_table(n_position, d_hid, cur_frame=-1, pre_n_position=1568): """Sinusoid position encoding table.""" def get_position_angle_vec(position): return [ position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid) ] sinusoid_table = np.array( [get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 sinusoid_table = torch.tensor( sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) print(f'n_position: {n_position}') print(f'pre_n_position: {pre_n_position}') if n_position // cur_frame * 8 != pre_n_position and cur_frame != -1: T = 8 # checkpoint frame P = 14 # checkpoint size C = d_hid new_P = int((n_position // cur_frame)**0.5) # testing size print( f'Pretraining uses 14x14, but current version is {new_P}x{new_P}') print('Interpolate the position embedding') sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2) sinusoid_table = torch.nn.functional.interpolate( sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False) # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape( -1, T, new_P, new_P, C) sinusoid_table = sinusoid_table.flatten(1, 3) if cur_frame != -1 and cur_frame != 8: print(f'Pretraining uses 8 frames, but current frame is {cur_frame}') print('Interpolate the position embedding') T = 8 # checkpoint frame new_T = cur_frame # testing frame # interpolate P = int((n_position // cur_frame)**0.5) # testing size C = d_hid sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T sinusoid_table = torch.nn.functional.interpolate( sinusoid_table, size=new_T, mode='linear') sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute( 0, 4, 1, 2, 3) # B, T, H, W, C sinusoid_table = sinusoid_table.flatten(1, 3) if n_position == pre_n_position: return sinusoid_table else: print('Use learnable position embedding') return nn.Parameter(sinusoid_table, requires_grad=True) @MODELS.register_module() class UMTViT(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), init_values=0., use_learnable_pos_emb=False, all_frames=16, tubelet_size=1, use_checkpoint=False, checkpoint_num=0, use_mean_pooling=True): super().__init__() self.num_features = self.embed_dim = embed_dim self.tubelet_size = tubelet_size self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, num_frames=all_frames, tubelet_size=self.tubelet_size) num_patches = self.patch_embed.num_patches self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num print(f'Use checkpoint: {use_checkpoint}') print(f'Checkpoint number: {checkpoint_num}') if use_learnable_pos_emb: self.pos_embed = nn.Parameter( torch.zeros(1, num_patches, embed_dim)) else: # sine-cosine positional embeddings is on the way if patch_size == 14: pre_n_position = 2048 else: pre_n_position = 1568 self.pos_embed = get_sinusoid_encoding_table( num_patches, embed_dim, all_frames // tubelet_size, pre_n_position=pre_n_position) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values) for i in range(depth) ]) self.norm = nn.Identity() if use_mean_pooling else norm_layer( embed_dim) self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None def forward_features(self, x): x = self.patch_embed(x) B, _, _ = x.size() if self.pos_embed is not None: x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to( x.device).clone().detach() x = self.pos_drop(x) for idx, blk in enumerate(self.blocks): if self.use_checkpoint and idx < self.checkpoint_num: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x = self.norm(x) if self.fc_norm is not None: return self.fc_norm(x.mean(1)) else: return x[:, 0] def forward(self, x): x = self.forward_features(x) return x